Cargando…
Body density of humpback whales (Megaptera novaengliae) in feeding aggregations estimated from hydrodynamic gliding performance
Many baleen whales undertake annual fasting and feeding cycles, resulting in substantial changes in their body condition, an important factor affecting fitness. As a measure of lipid-store body condition, tissue density of a few deep diving marine mammals has been estimated using a hydrodynamic glid...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6042725/ https://www.ncbi.nlm.nih.gov/pubmed/30001369 http://dx.doi.org/10.1371/journal.pone.0200287 |
_version_ | 1783339205649235968 |
---|---|
author | Narazaki, Tomoko Isojunno, Saana Nowacek, Douglas P. Swift, Rene Friedlaender, Ari S. Ramp, Christian Smout, Sophie Aoki, Kagari Deecke, Volker B. Sato, Katsufumi Miller, Patrick J. O. |
author_facet | Narazaki, Tomoko Isojunno, Saana Nowacek, Douglas P. Swift, Rene Friedlaender, Ari S. Ramp, Christian Smout, Sophie Aoki, Kagari Deecke, Volker B. Sato, Katsufumi Miller, Patrick J. O. |
author_sort | Narazaki, Tomoko |
collection | PubMed |
description | Many baleen whales undertake annual fasting and feeding cycles, resulting in substantial changes in their body condition, an important factor affecting fitness. As a measure of lipid-store body condition, tissue density of a few deep diving marine mammals has been estimated using a hydrodynamic glide model of drag and buoyancy forces. Here, we applied the method to shallow-diving humpback whales (Megaptera novaeangliae) in North Atlantic and Antarctic feeding aggregations. High-resolution 3-axis acceleration, depth and speed data were collected from 24 whales. Measured values of acceleration during 5 s glides were fitted to a hydrodynamic glide model to estimate unknown parameters (tissue density, drag term and diving gas volume) in a Bayesian framework. Estimated species-average tissue density (1031.6 ± 2.1 kg m(-3), ±95% credible interval) indicates that humpback whale tissue is typically negatively buoyant although there was a large inter-individual variation ranging from 1025.2 to 1043.1 kg m(-3). The precision of the individual estimates was substantially finer than the variation across different individual whales, demonstrating a progressive decrease in tissue density throughout the feeding season and comparably high lipid-store in pregnant females. The drag term (C(D)Am(-1)) was estimated to be relatively high, indicating a large effect of lift-related induced drag for humpback whales. Our results show that tissue density of shallow diving baleen whales can be estimated using the hydrodynamic gliding model, although cross-validation with other techniques is an essential next step. This method for estimating body condition is likely to be broadly applicable across a range of aquatic animals and environments. |
format | Online Article Text |
id | pubmed-6042725 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-60427252018-07-19 Body density of humpback whales (Megaptera novaengliae) in feeding aggregations estimated from hydrodynamic gliding performance Narazaki, Tomoko Isojunno, Saana Nowacek, Douglas P. Swift, Rene Friedlaender, Ari S. Ramp, Christian Smout, Sophie Aoki, Kagari Deecke, Volker B. Sato, Katsufumi Miller, Patrick J. O. PLoS One Research Article Many baleen whales undertake annual fasting and feeding cycles, resulting in substantial changes in their body condition, an important factor affecting fitness. As a measure of lipid-store body condition, tissue density of a few deep diving marine mammals has been estimated using a hydrodynamic glide model of drag and buoyancy forces. Here, we applied the method to shallow-diving humpback whales (Megaptera novaeangliae) in North Atlantic and Antarctic feeding aggregations. High-resolution 3-axis acceleration, depth and speed data were collected from 24 whales. Measured values of acceleration during 5 s glides were fitted to a hydrodynamic glide model to estimate unknown parameters (tissue density, drag term and diving gas volume) in a Bayesian framework. Estimated species-average tissue density (1031.6 ± 2.1 kg m(-3), ±95% credible interval) indicates that humpback whale tissue is typically negatively buoyant although there was a large inter-individual variation ranging from 1025.2 to 1043.1 kg m(-3). The precision of the individual estimates was substantially finer than the variation across different individual whales, demonstrating a progressive decrease in tissue density throughout the feeding season and comparably high lipid-store in pregnant females. The drag term (C(D)Am(-1)) was estimated to be relatively high, indicating a large effect of lift-related induced drag for humpback whales. Our results show that tissue density of shallow diving baleen whales can be estimated using the hydrodynamic gliding model, although cross-validation with other techniques is an essential next step. This method for estimating body condition is likely to be broadly applicable across a range of aquatic animals and environments. Public Library of Science 2018-07-12 /pmc/articles/PMC6042725/ /pubmed/30001369 http://dx.doi.org/10.1371/journal.pone.0200287 Text en © 2018 Narazaki et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Narazaki, Tomoko Isojunno, Saana Nowacek, Douglas P. Swift, Rene Friedlaender, Ari S. Ramp, Christian Smout, Sophie Aoki, Kagari Deecke, Volker B. Sato, Katsufumi Miller, Patrick J. O. Body density of humpback whales (Megaptera novaengliae) in feeding aggregations estimated from hydrodynamic gliding performance |
title | Body density of humpback whales (Megaptera novaengliae) in feeding aggregations estimated from hydrodynamic gliding performance |
title_full | Body density of humpback whales (Megaptera novaengliae) in feeding aggregations estimated from hydrodynamic gliding performance |
title_fullStr | Body density of humpback whales (Megaptera novaengliae) in feeding aggregations estimated from hydrodynamic gliding performance |
title_full_unstemmed | Body density of humpback whales (Megaptera novaengliae) in feeding aggregations estimated from hydrodynamic gliding performance |
title_short | Body density of humpback whales (Megaptera novaengliae) in feeding aggregations estimated from hydrodynamic gliding performance |
title_sort | body density of humpback whales (megaptera novaengliae) in feeding aggregations estimated from hydrodynamic gliding performance |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6042725/ https://www.ncbi.nlm.nih.gov/pubmed/30001369 http://dx.doi.org/10.1371/journal.pone.0200287 |
work_keys_str_mv | AT narazakitomoko bodydensityofhumpbackwhalesmegapteranovaengliaeinfeedingaggregationsestimatedfromhydrodynamicglidingperformance AT isojunnosaana bodydensityofhumpbackwhalesmegapteranovaengliaeinfeedingaggregationsestimatedfromhydrodynamicglidingperformance AT nowacekdouglasp bodydensityofhumpbackwhalesmegapteranovaengliaeinfeedingaggregationsestimatedfromhydrodynamicglidingperformance AT swiftrene bodydensityofhumpbackwhalesmegapteranovaengliaeinfeedingaggregationsestimatedfromhydrodynamicglidingperformance AT friedlaenderaris bodydensityofhumpbackwhalesmegapteranovaengliaeinfeedingaggregationsestimatedfromhydrodynamicglidingperformance AT rampchristian bodydensityofhumpbackwhalesmegapteranovaengliaeinfeedingaggregationsestimatedfromhydrodynamicglidingperformance AT smoutsophie bodydensityofhumpbackwhalesmegapteranovaengliaeinfeedingaggregationsestimatedfromhydrodynamicglidingperformance AT aokikagari bodydensityofhumpbackwhalesmegapteranovaengliaeinfeedingaggregationsestimatedfromhydrodynamicglidingperformance AT deeckevolkerb bodydensityofhumpbackwhalesmegapteranovaengliaeinfeedingaggregationsestimatedfromhydrodynamicglidingperformance AT satokatsufumi bodydensityofhumpbackwhalesmegapteranovaengliaeinfeedingaggregationsestimatedfromhydrodynamicglidingperformance AT millerpatrickjo bodydensityofhumpbackwhalesmegapteranovaengliaeinfeedingaggregationsestimatedfromhydrodynamicglidingperformance |