Cargando…
Transdermal optical imaging revealed different spatiotemporal patterns of facial cardiovascular activities
Human cardiovascular activities are important indicators of a variety of physiological and psychological activities in human neuroscience research. The present proof-of-concept study aimed to reveal the spatiotemporal patterns of cardiovascular activities from the dynamic changes in hemoglobin conce...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6043515/ https://www.ncbi.nlm.nih.gov/pubmed/30002447 http://dx.doi.org/10.1038/s41598-018-28804-0 |
Sumario: | Human cardiovascular activities are important indicators of a variety of physiological and psychological activities in human neuroscience research. The present proof-of-concept study aimed to reveal the spatiotemporal patterns of cardiovascular activities from the dynamic changes in hemoglobin concentrations in the face. We first recorded the dynamics of facial transdermal blood flow using a digital video camera and the Electrocardiography (ECG) signals using an ECG system simultaneously. Then we decomposed the video imaging data extracted from different sub-regions of a face into independent components using group independent component analysis (group ICA). Finally, the ICA components that included cardiovascular activities were identified by correlating their magnitude spectrum to those obtained from the ECG. We found that cardiovascular activities were associated with five independent components reflecting different spatiotemporal dynamics of facial blood flow changes. The strongest strengths of these ICA components were observed in the bilateral forehead, the left chin, and the left cheek, respectively. Our findings suggest that the cardiovascular activities presented different dynamic properties within different facial sub-regions, respectively. More broadly, the present findings point to the potential of the transdermal optical imaging technology as a new neuroscience methodology to study human physiology and psychology, noninvasively and remotely in a contactless manner. |
---|