Cargando…

B-cell leukemia/lymphoma 10 promotes angiogenesis in an experimental corneal neovascularization model

PURPOSE: Corneal neovascularization (CrNV) arises from many causes including corneal inflammatory, infectious, or traumatic insult, and frequently leads to impaired vision. This study seeks to determine the role of B-cell leukemia/lymphoma 10 (BCL-10) in the development of experimental CrNV. METHODS...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Gaoqin, Lu, Peirong, Chen, Lei, Zhang, Wenpeng, Wang, Mengjiao, Li, Dan, Zhang, Xueguang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6043546/
https://www.ncbi.nlm.nih.gov/pubmed/29515217
http://dx.doi.org/10.1038/s41433-018-0039-x
Descripción
Sumario:PURPOSE: Corneal neovascularization (CrNV) arises from many causes including corneal inflammatory, infectious, or traumatic insult, and frequently leads to impaired vision. This study seeks to determine the role of B-cell leukemia/lymphoma 10 (BCL-10) in the development of experimental CrNV. METHODS: Corneas from BCL-10 knockout (KO) mice and wild-type (WT) mice were burned by sodium hydroxide (NaOH) to create the CrNV model and neovascular formation in the corneas was assessed 2 weeks later. Intracorneal macrophage accumulation and the expression of angiogenic factors were quantified by flow cytometric analysis (FCM) and real-time PCR, respectively. RESULTS: The amount of CrNV was determined 2 weeks after alkali burn. Compared to WT mice, the amount of CrNV in BCL-10 KO mice was significantly decreased. FCM revealed that F4/80-positive macrophages were markedly decreased in BCL-10 KO mice compared with WT mice. Reverse transcription PCR showed that the mRNA expression levels of intracorneal vascular endothelial growth factor-A (VEGF-A), basic fibroblast growth factor (bFGF) and monocyte chemotactic protein 1 were reduced in BCL-10 KO mice compared with WT mice. CONCLUSION: BCL-10 KO mice exhibited reduced alkali-induced CrNV by suppressing intracorneal macrophage infiltration, which subsequently led to decreased VEGF-A and bFGF expression, suggesting that BCL-10 may become a potential clinical intervening target of CrNV.