Cargando…
An account of solvent accessibility in protein-RNA recognition
Protein–RNA recognition often induces conformational changes in binding partners. Consequently, the solvent accessible surface area (SASA) buried in contact estimated from the co-crystal structures may differ from that calculated using their unbound forms. To evaluate the change in accessibility upo...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6043566/ https://www.ncbi.nlm.nih.gov/pubmed/30002431 http://dx.doi.org/10.1038/s41598-018-28373-2 |
Sumario: | Protein–RNA recognition often induces conformational changes in binding partners. Consequently, the solvent accessible surface area (SASA) buried in contact estimated from the co-crystal structures may differ from that calculated using their unbound forms. To evaluate the change in accessibility upon binding, we compare SASA of 126 protein-RNA complexes between bound and unbound forms. We observe, in majority of cases the interface of both the binding partners gain accessibility upon binding, which is often associated with either large domain movements or secondary structural transitions in RNA-binding proteins (RBPs), and binding-induced conformational changes in RNAs. At the non-interface region, majority of RNAs lose accessibility upon binding, however, no such preference is observed for RBPs. Side chains of RBPs have major contribution in change in accessibility. In case of flexible binding, we find a moderate correlation between the binding free energy and change in accessibility at the interface. Finally, we introduce a parameter, the ratio of gain to loss of accessibility upon binding, which can be used to identify the native solution among the flexible docking models. Our findings provide fundamental insights into the relationship between flexibility and solvent accessibility, and advance our understanding on binding induced folding in protein-RNA recognition. |
---|