Cargando…

Resting-state fMRI study on drug-naive patients of essential tremor with and without head tremor

This study used resting-state functional MRI (r-fMRI) to evaluate intrinsic brain activity in drug-naive patients with essential tremor (ET) with and without head tremor. We enrolled 20 patients with ET with hand and head tremor (h-ET), 27 patients with ET without head tremor (a-ET), and 27 healthy...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Ling, Lei, Du, Suo, Xueling, Li, Nannan, Lu, Zhongjiao, Li, Junying, Peng, Jiaxin, Gong, Qiyong, Peng, Rong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6043592/
https://www.ncbi.nlm.nih.gov/pubmed/30002390
http://dx.doi.org/10.1038/s41598-018-28778-z
Descripción
Sumario:This study used resting-state functional MRI (r-fMRI) to evaluate intrinsic brain activity in drug-naive patients with essential tremor (ET) with and without head tremor. We enrolled 20 patients with ET with hand and head tremor (h-ET), 27 patients with ET without head tremor (a-ET), and 27 healthy controls (HCs). All participants underwent r-fMRI scans on a 3-T MR system. The amplitude of low-frequency fluctuation (ALFF) of blood oxygen level-dependent signals was used to characterize regional cerebral function. We identified increased ALFF value in the bilateral posterior lobe of cerebellum in the h-ET patients relative to a-ET and HCs and demonstrated that h-ET is related to abnormalities in the cerebello-cortical areas, while the a-ET is related to abnormalities in the thalamo-cortical areas. In addition, we observed the ALFF abnormality in the cerebellum (left cerebellum VIII and right cerebellum VI) correlated with the tremor score in h-ET patients and abnormal ALFF in the left precentral gyrus correlated with the age at onset and disease duration in h-ET patients. These findings may be helpful for facilitating further understanding of the potential mechanisms underlying different subtypes of ET.