Cargando…
Taq1A polymorphism and medication effects on inhibitory action control in Parkinson disease
BACKGROUND: Dopamine therapy in Parkinson disease (PD) can have differential effects on inhibitory action control, or the ability to inhibit reflexive or impulsive actions. Dopamine agonist (DAAg) medications, which preferentially target D2 and D3 receptors, can either improve or worsen control of i...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6043698/ https://www.ncbi.nlm.nih.gov/pubmed/29856137 http://dx.doi.org/10.1002/brb3.1008 |
Sumario: | BACKGROUND: Dopamine therapy in Parkinson disease (PD) can have differential effects on inhibitory action control, or the ability to inhibit reflexive or impulsive actions. Dopamine agonist (DAAg) medications, which preferentially target D2 and D3 receptors, can either improve or worsen control of impulsive actions in patients with PD. We have reported that the direction of this effect depends on baseline levels of performance on inhibitory control tasks. This observation suggests that there may exist certain biologic determinants that contribute to these patient‐specific differences. We hypothesized that one important factor might be functional polymorphisms in D2‐like receptor genes. AIM: The goal of this study was to determine whether the direction of DAAg effects on inhibitory control depends on functional polymorphisms in the DRD2 and DRD3 genes. METHODS: Twenty‐eight patients with PD were genotyped for known functional polymorphisms in DRD2 (rs6277 and rs1800497) and DRD3 (rs6280) receptors. These patients then completed the Simon conflict task both on and off DAAg therapy in a counterbalanced manner. RESULTS: We found that patients with the rs1800497 Taq1A (A1) polymorphism (A1/A1 or A1/A2: 11 subjects) showed improved proficiency to suppress impulsive actions when on DAAg; conversely, patients with the A2/A2 allele (14 patients) became less proficient at suppressing incorrect response information on DAAg therapy (Group × Medication, F(1, 23) = 5.65, p < 0.05). Polymorphisms in rs6277 and rs6280 were not associated with a differential medication response. CONCLUSION: These results suggest that certain DRD polymorphisms may determine the direction of DAAg effects on critical cognitive control processes impaired in PD. Our findings have implications for understanding pharmacogenomics interactions on a larger scale and the role these may play in the wide variability of treatment effects seen in the PD population. |
---|