Cargando…

Option pricing in the moderate deviations regime

We consider call option prices close to expiry in diffusion models, in an asymptotic regime (“moderately out of the money”) that interpolates between the well‐studied cases of at‐the‐money and out‐of‐the‐money regimes. First and higher order small‐time moderate deviation estimates of call prices and...

Descripción completa

Detalles Bibliográficos
Autores principales: Friz, Peter, Gerhold, Stefan, Pinter, Arpad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6043956/
https://www.ncbi.nlm.nih.gov/pubmed/30018466
http://dx.doi.org/10.1111/mafi.12156
_version_ 1783339384926371840
author Friz, Peter
Gerhold, Stefan
Pinter, Arpad
author_facet Friz, Peter
Gerhold, Stefan
Pinter, Arpad
author_sort Friz, Peter
collection PubMed
description We consider call option prices close to expiry in diffusion models, in an asymptotic regime (“moderately out of the money”) that interpolates between the well‐studied cases of at‐the‐money and out‐of‐the‐money regimes. First and higher order small‐time moderate deviation estimates of call prices and implied volatilities are obtained. The expansions involve only simple expressions of the model parameters, and we show how to calculate them for generic local and stochastic volatility models. Some numerical computations for the Heston model illustrate the accuracy of our results.
format Online
Article
Text
id pubmed-6043956
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-60439562018-07-15 Option pricing in the moderate deviations regime Friz, Peter Gerhold, Stefan Pinter, Arpad Math Financ Original Articles We consider call option prices close to expiry in diffusion models, in an asymptotic regime (“moderately out of the money”) that interpolates between the well‐studied cases of at‐the‐money and out‐of‐the‐money regimes. First and higher order small‐time moderate deviation estimates of call prices and implied volatilities are obtained. The expansions involve only simple expressions of the model parameters, and we show how to calculate them for generic local and stochastic volatility models. Some numerical computations for the Heston model illustrate the accuracy of our results. John Wiley and Sons Inc. 2017-08-25 2018-07 /pmc/articles/PMC6043956/ /pubmed/30018466 http://dx.doi.org/10.1111/mafi.12156 Text en © 2017 The Authors. Mathematical Finance Published by Wiley Periodicals, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Friz, Peter
Gerhold, Stefan
Pinter, Arpad
Option pricing in the moderate deviations regime
title Option pricing in the moderate deviations regime
title_full Option pricing in the moderate deviations regime
title_fullStr Option pricing in the moderate deviations regime
title_full_unstemmed Option pricing in the moderate deviations regime
title_short Option pricing in the moderate deviations regime
title_sort option pricing in the moderate deviations regime
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6043956/
https://www.ncbi.nlm.nih.gov/pubmed/30018466
http://dx.doi.org/10.1111/mafi.12156
work_keys_str_mv AT frizpeter optionpricinginthemoderatedeviationsregime
AT gerholdstefan optionpricinginthemoderatedeviationsregime
AT pinterarpad optionpricinginthemoderatedeviationsregime