Cargando…
Alternative empirical Bayes models for adjusting for batch effects in genomic studies
BACKGROUND: Combining genomic data sets from multiple studies is advantageous to increase statistical power in studies where logistical considerations restrict sample size or require the sequential generation of data. However, significant technical heterogeneity is commonly observed across multiple...
Autores principales: | Zhang, Yuqing, Jenkins, David F., Manimaran, Solaiappan, Johnson, W. Evan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044013/ https://www.ncbi.nlm.nih.gov/pubmed/30001694 http://dx.doi.org/10.1186/s12859-018-2263-6 |
Ejemplares similares
-
BatchQC: interactive software for evaluating sample and batch effects in genomic data
por: Manimaran, Solaiappan, et al.
Publicado: (2016) -
PathoScope 2.0: a complete computational framework for strain identification in environmental or clinical sequencing samples
por: Hong, Changjin, et al.
Publicado: (2014) -
Combining location-and-scale batch effect adjustment with data cleaning by latent factor adjustment
por: Hornung, Roman, et al.
Publicado: (2016) -
β-empirical Bayes inference and model diagnosis of microarray data
por: Hossain Mollah, Mohammad Manir, et al.
Publicado: (2012) -
ComBat-seq: batch effect adjustment for RNA-seq count data
por: Zhang, Yuqing, et al.
Publicado: (2020)