Cargando…
Effective automated pipeline for 3D reconstruction of synapses based on deep learning
BACKGROUND: The locations and shapes of synapses are important in reconstructing connectomes and analyzing synaptic plasticity. However, current synapse detection and segmentation methods are still not adequate for accurately acquiring the synaptic connectivity, and they cannot effectively alleviate...
Autores principales: | Xiao, Chi, Li, Weifu, Deng, Hao, Chen, Xi, Yang, Yang, Xie, Qiwei, Han, Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044049/ https://www.ncbi.nlm.nih.gov/pubmed/30005590 http://dx.doi.org/10.1186/s12859-018-2232-0 |
Ejemplares similares
-
A fast forward 3D connection algorithm for mitochondria and synapse segmentations from serial EM images
por: Li, Weifu, et al.
Publicado: (2018) -
An automated pipeline for bouton, spine, and synapse detection of in vivo two-photon images
por: Xie, Qiwei, et al.
Publicado: (2017) -
Endoscopy-based IBD identification by a quantized deep learning pipeline
por: Datres, Massimiliano, et al.
Publicado: (2023) -
Automatic Reconstruction of Mitochondria and Endoplasmic Reticulum in Electron Microscopy Volumes by Deep Learning
por: Liu, Jing, et al.
Publicado: (2020) -
Velo-Predictor: an ensemble learning pipeline for RNA velocity prediction
por: Wang, Xin, et al.
Publicado: (2021)