Cargando…
Improving the learning of chemical-protein interactions from literature using transfer learning and specialized word embeddings
In this paper, we explore the application of artificial neural network (‘deep learning’) methods to the problem of detecting chemical-protein interactions in PubMed abstracts. We present here a system using multiple Long Short Term Memory layers to analyse candidate interactions, to determine whethe...
Autores principales: | Corbett, P, Boyle, J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044291/ https://www.ncbi.nlm.nih.gov/pubmed/30010749 http://dx.doi.org/10.1093/database/bay066 |
Ejemplares similares
-
Augmenting Semantic Lexicons Using Word Embeddings and Transfer Learning
por: Alshaabi, Thayer, et al.
Publicado: (2022) -
Deep learning with word embeddings improves biomedical named entity recognition
por: Habibi, Maryam, et al.
Publicado: (2017) -
Machine learning with persistent homology and chemical word embeddings improves prediction accuracy and interpretability in metal-organic frameworks
por: Krishnapriyan, Aditi S., et al.
Publicado: (2021) -
Using Word Embeddings to Learn a Better Food Ontology
por: Youn, Jason, et al.
Publicado: (2020) -
Combining word embeddings to extract chemical and drug entities in biomedical literature
por: López-Úbeda, Pilar, et al.
Publicado: (2021)