Cargando…
A Verified ODE Solver and the Lorenz Attractor
A rigorous numerical algorithm, formally verified with Isabelle/HOL, is used to certify the computations that Tucker used to prove chaos for the Lorenz attractor. The verification is based on a formalization of a diverse variety of mathematics and algorithms. Formalized mathematics include ordinary...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044317/ https://www.ncbi.nlm.nih.gov/pubmed/30069071 http://dx.doi.org/10.1007/s10817-017-9448-y |
Sumario: | A rigorous numerical algorithm, formally verified with Isabelle/HOL, is used to certify the computations that Tucker used to prove chaos for the Lorenz attractor. The verification is based on a formalization of a diverse variety of mathematics and algorithms. Formalized mathematics include ordinary differential equations and Poincaré maps. Algorithms include low level approximation schemes based on Runge–Kutta methods and affine arithmetic. On a high level, reachability analysis is guided by static hybridization and adaptive step-size control and splitting. The algorithms are systematically refined towards an implementation that can be executed on Tucker’s original input data. |
---|