Cargando…

Selective Bactericidal Activity of Divalent Metal Salts of Lauric Acid

[Image: see text] Bacteria play a crucial role in skin health. For example, Staphylococcus aureus and Propionibacterium acnes cause skin roughness and acne, whereas Staphylococcus epidermidis enhances innate barrier immunity. Therefore, controlling the bacterial flora is important in dermatology and...

Descripción completa

Detalles Bibliográficos
Autores principales: Yamamoto, Yoshiaki, Morikawa, Toshiya, Kawai, Takahiro, Nonomura, Yoshimune
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2017
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044674/
https://www.ncbi.nlm.nih.gov/pubmed/30023510
http://dx.doi.org/10.1021/acsomega.6b00279
Descripción
Sumario:[Image: see text] Bacteria play a crucial role in skin health. For example, Staphylococcus aureus and Propionibacterium acnes cause skin roughness and acne, whereas Staphylococcus epidermidis enhances innate barrier immunity. Therefore, controlling the bacterial flora is important in dermatology and cosmetic chemistry. In this study, the bactericidal activities of different metal salts of lauric acid were evaluated. The bactericidal behavior of the salts changed according to the type of metal ion. Specifically, the Mg-, Ca-, and Mn-containing salts effectively sterilized only S. aureus and P. acnes. Their Co, Ni, and Cu salts sterilized all bacteria, including S. epidermidis, whereas the Zn salt proved ineffective. The Cu salt displayed the strongest bactericidal activity. Spin-trapping, detected using electron spin resonance, showed that this salt catalyzed the generation of hydroxyl radicals, which can destroy bacterial cell membranes. These findings demonstrate that metal-ion selection is an important factor in the design of bactericidal agents for healthcare products.