Cargando…
Selective Bactericidal Activity of Divalent Metal Salts of Lauric Acid
[Image: see text] Bacteria play a crucial role in skin health. For example, Staphylococcus aureus and Propionibacterium acnes cause skin roughness and acne, whereas Staphylococcus epidermidis enhances innate barrier immunity. Therefore, controlling the bacterial flora is important in dermatology and...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044674/ https://www.ncbi.nlm.nih.gov/pubmed/30023510 http://dx.doi.org/10.1021/acsomega.6b00279 |
Sumario: | [Image: see text] Bacteria play a crucial role in skin health. For example, Staphylococcus aureus and Propionibacterium acnes cause skin roughness and acne, whereas Staphylococcus epidermidis enhances innate barrier immunity. Therefore, controlling the bacterial flora is important in dermatology and cosmetic chemistry. In this study, the bactericidal activities of different metal salts of lauric acid were evaluated. The bactericidal behavior of the salts changed according to the type of metal ion. Specifically, the Mg-, Ca-, and Mn-containing salts effectively sterilized only S. aureus and P. acnes. Their Co, Ni, and Cu salts sterilized all bacteria, including S. epidermidis, whereas the Zn salt proved ineffective. The Cu salt displayed the strongest bactericidal activity. Spin-trapping, detected using electron spin resonance, showed that this salt catalyzed the generation of hydroxyl radicals, which can destroy bacterial cell membranes. These findings demonstrate that metal-ion selection is an important factor in the design of bactericidal agents for healthcare products. |
---|