Cargando…
Crystal Structure and Potential Head-to-Middle Condensation Function of a Z,Z-Farnesyl Diphosphate Synthase
[Image: see text] Plants produce a wide variety of secondary metabolites in response to adverse environmental factors. Z,Z-Farnesyl diphosphate (Z,Z-FPP), synthesized by Z,Z-farnesyl diphosphate synthase (zFPS), supports the formation of phytochemicals in wild tomatoes. Here, the crystal structure o...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044691/ https://www.ncbi.nlm.nih.gov/pubmed/30023621 http://dx.doi.org/10.1021/acsomega.6b00562 |
Sumario: | [Image: see text] Plants produce a wide variety of secondary metabolites in response to adverse environmental factors. Z,Z-Farnesyl diphosphate (Z,Z-FPP), synthesized by Z,Z-farnesyl diphosphate synthase (zFPS), supports the formation of phytochemicals in wild tomatoes. Here, the crystal structure of N-terminal truncated zFPS (ΔzFPS) was determined. Irregular products including lavandulyl diphosphate and an unknown compound were surprisingly found. Apart from the truncated N-terminus as a functional regulator, structure-based analysis and mutagenesis assays revealed a residue H103 in ΔzFPS as one of the key elements to this irregular function. A series of substrate–enzyme complex structures were obtained from ΔzFPS-H103Y by co-crystallizing with isopentenyl diphosphate, dimethylallyl thiolodiphosphate, or both. Various substrate-binding modes were revealed. The catalytic mechanisms of both the head-to-tail and head-to-middle reactions in ΔzFPS were proposed. Functional switch between the two mechanisms in this enzyme and the essential role played by the flexible C-terminus were elucidated as well. |
---|