Cargando…

Adsorbate-driven reactive interfacial Pt-NiO(1−x) nanostructure formation on the Pt(3)Ni(111) alloy surface

The origin of the synergistic catalytic effect between metal catalysts and reducible oxides has been debated for decades. Clarification of this effect, namely, the strong metal-support interaction (SMSI), requires an understanding of the geometric and electronic structures of metal-metal oxide inter...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Jeongjin, Park, Woong Hyeon, Doh, Won Hui, Lee, Si Woo, Noh, Myung Cheol, Gallet, Jean-Jacques, Bournel, Fabrice, Kondoh, Hiroshi, Mase, Kazuhiko, Jung, Yousung, Mun, Bongjin Simon, Park, Jeong Young
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044734/
https://www.ncbi.nlm.nih.gov/pubmed/30027118
http://dx.doi.org/10.1126/sciadv.aat3151
_version_ 1783339529871032320
author Kim, Jeongjin
Park, Woong Hyeon
Doh, Won Hui
Lee, Si Woo
Noh, Myung Cheol
Gallet, Jean-Jacques
Bournel, Fabrice
Kondoh, Hiroshi
Mase, Kazuhiko
Jung, Yousung
Mun, Bongjin Simon
Park, Jeong Young
author_facet Kim, Jeongjin
Park, Woong Hyeon
Doh, Won Hui
Lee, Si Woo
Noh, Myung Cheol
Gallet, Jean-Jacques
Bournel, Fabrice
Kondoh, Hiroshi
Mase, Kazuhiko
Jung, Yousung
Mun, Bongjin Simon
Park, Jeong Young
author_sort Kim, Jeongjin
collection PubMed
description The origin of the synergistic catalytic effect between metal catalysts and reducible oxides has been debated for decades. Clarification of this effect, namely, the strong metal-support interaction (SMSI), requires an understanding of the geometric and electronic structures of metal-metal oxide interfaces under operando conditions. We show that the inherent lattice mismatch of bimetallic materials selectively creates surface segregation of subsurface metal atoms. Interfacial metal-metal oxide nanostructures are then formed under chemical reaction environments at ambient pressure, which thus increases the catalytic activity for the CO oxidation reaction. Our in situ surface characterizations using ambient-pressure scanning tunneling microscopy and ambient-pressure x-ray photoelectron spectroscopy exhibit (i) a Pt-skin layer on the Pt-Ni alloyed surface under ultrahigh vacuum, (ii) selective Ni segregation followed by the formation of NiO(1−x) clusters under oxygen gas, and (iii) the coexistence of NiO(1−x) clusters on the Pt-skin during the CO oxidation reaction. The formation of interfacial Pt-NiO(1−x) nanostructures is responsible for a highly efficient step in the CO oxidation reaction. Density functional theory calculations of the Pt(3)Ni(111) surface demonstrate that a CO molecule adsorbed on an exposed Pt atom with an interfacial oxygen from a segregated NiO(1−x) cluster has a low surface energy barrier of 0.37 eV, compared with 0.86 eV for the Pt(111) surface.
format Online
Article
Text
id pubmed-6044734
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-60447342018-07-19 Adsorbate-driven reactive interfacial Pt-NiO(1−x) nanostructure formation on the Pt(3)Ni(111) alloy surface Kim, Jeongjin Park, Woong Hyeon Doh, Won Hui Lee, Si Woo Noh, Myung Cheol Gallet, Jean-Jacques Bournel, Fabrice Kondoh, Hiroshi Mase, Kazuhiko Jung, Yousung Mun, Bongjin Simon Park, Jeong Young Sci Adv Research Articles The origin of the synergistic catalytic effect between metal catalysts and reducible oxides has been debated for decades. Clarification of this effect, namely, the strong metal-support interaction (SMSI), requires an understanding of the geometric and electronic structures of metal-metal oxide interfaces under operando conditions. We show that the inherent lattice mismatch of bimetallic materials selectively creates surface segregation of subsurface metal atoms. Interfacial metal-metal oxide nanostructures are then formed under chemical reaction environments at ambient pressure, which thus increases the catalytic activity for the CO oxidation reaction. Our in situ surface characterizations using ambient-pressure scanning tunneling microscopy and ambient-pressure x-ray photoelectron spectroscopy exhibit (i) a Pt-skin layer on the Pt-Ni alloyed surface under ultrahigh vacuum, (ii) selective Ni segregation followed by the formation of NiO(1−x) clusters under oxygen gas, and (iii) the coexistence of NiO(1−x) clusters on the Pt-skin during the CO oxidation reaction. The formation of interfacial Pt-NiO(1−x) nanostructures is responsible for a highly efficient step in the CO oxidation reaction. Density functional theory calculations of the Pt(3)Ni(111) surface demonstrate that a CO molecule adsorbed on an exposed Pt atom with an interfacial oxygen from a segregated NiO(1−x) cluster has a low surface energy barrier of 0.37 eV, compared with 0.86 eV for the Pt(111) surface. American Association for the Advancement of Science 2018-07-13 /pmc/articles/PMC6044734/ /pubmed/30027118 http://dx.doi.org/10.1126/sciadv.aat3151 Text en Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Kim, Jeongjin
Park, Woong Hyeon
Doh, Won Hui
Lee, Si Woo
Noh, Myung Cheol
Gallet, Jean-Jacques
Bournel, Fabrice
Kondoh, Hiroshi
Mase, Kazuhiko
Jung, Yousung
Mun, Bongjin Simon
Park, Jeong Young
Adsorbate-driven reactive interfacial Pt-NiO(1−x) nanostructure formation on the Pt(3)Ni(111) alloy surface
title Adsorbate-driven reactive interfacial Pt-NiO(1−x) nanostructure formation on the Pt(3)Ni(111) alloy surface
title_full Adsorbate-driven reactive interfacial Pt-NiO(1−x) nanostructure formation on the Pt(3)Ni(111) alloy surface
title_fullStr Adsorbate-driven reactive interfacial Pt-NiO(1−x) nanostructure formation on the Pt(3)Ni(111) alloy surface
title_full_unstemmed Adsorbate-driven reactive interfacial Pt-NiO(1−x) nanostructure formation on the Pt(3)Ni(111) alloy surface
title_short Adsorbate-driven reactive interfacial Pt-NiO(1−x) nanostructure formation on the Pt(3)Ni(111) alloy surface
title_sort adsorbate-driven reactive interfacial pt-nio(1−x) nanostructure formation on the pt(3)ni(111) alloy surface
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044734/
https://www.ncbi.nlm.nih.gov/pubmed/30027118
http://dx.doi.org/10.1126/sciadv.aat3151
work_keys_str_mv AT kimjeongjin adsorbatedrivenreactiveinterfacialptnio1xnanostructureformationonthept3ni111alloysurface
AT parkwoonghyeon adsorbatedrivenreactiveinterfacialptnio1xnanostructureformationonthept3ni111alloysurface
AT dohwonhui adsorbatedrivenreactiveinterfacialptnio1xnanostructureformationonthept3ni111alloysurface
AT leesiwoo adsorbatedrivenreactiveinterfacialptnio1xnanostructureformationonthept3ni111alloysurface
AT nohmyungcheol adsorbatedrivenreactiveinterfacialptnio1xnanostructureformationonthept3ni111alloysurface
AT galletjeanjacques adsorbatedrivenreactiveinterfacialptnio1xnanostructureformationonthept3ni111alloysurface
AT bournelfabrice adsorbatedrivenreactiveinterfacialptnio1xnanostructureformationonthept3ni111alloysurface
AT kondohhiroshi adsorbatedrivenreactiveinterfacialptnio1xnanostructureformationonthept3ni111alloysurface
AT masekazuhiko adsorbatedrivenreactiveinterfacialptnio1xnanostructureformationonthept3ni111alloysurface
AT jungyousung adsorbatedrivenreactiveinterfacialptnio1xnanostructureformationonthept3ni111alloysurface
AT munbongjinsimon adsorbatedrivenreactiveinterfacialptnio1xnanostructureformationonthept3ni111alloysurface
AT parkjeongyoung adsorbatedrivenreactiveinterfacialptnio1xnanostructureformationonthept3ni111alloysurface