Cargando…

Addressable electron spin resonance using donors and donor molecules in silicon

Phosphorus donor impurities in silicon are a promising candidate for solid-state quantum computing due to their exceptionally long coherence times and high fidelities. However, individual addressability of exchange coupled donors with separations ~15 nm is challenging. We show that by using atomic p...

Descripción completa

Detalles Bibliográficos
Autores principales: Hile, Samuel J., Fricke, Lukas, House, Matthew G., Peretz, Eldad, Chen, Chin Yi, Wang, Yu, Broome, Matthew, Gorman, Samuel K., Keizer, Joris G., Rahman, Rajib, Simmons, Michelle Y.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044739/
https://www.ncbi.nlm.nih.gov/pubmed/30027114
http://dx.doi.org/10.1126/sciadv.aaq1459
_version_ 1783339531022368768
author Hile, Samuel J.
Fricke, Lukas
House, Matthew G.
Peretz, Eldad
Chen, Chin Yi
Wang, Yu
Broome, Matthew
Gorman, Samuel K.
Keizer, Joris G.
Rahman, Rajib
Simmons, Michelle Y.
author_facet Hile, Samuel J.
Fricke, Lukas
House, Matthew G.
Peretz, Eldad
Chen, Chin Yi
Wang, Yu
Broome, Matthew
Gorman, Samuel K.
Keizer, Joris G.
Rahman, Rajib
Simmons, Michelle Y.
author_sort Hile, Samuel J.
collection PubMed
description Phosphorus donor impurities in silicon are a promising candidate for solid-state quantum computing due to their exceptionally long coherence times and high fidelities. However, individual addressability of exchange coupled donors with separations ~15 nm is challenging. We show that by using atomic precision lithography, we can place a single P donor next to a 2P molecule 16 ± 1 nm apart and use their distinctive hyperfine coupling strengths to address qubits at vastly different resonance frequencies. In particular, the single donor yields two hyperfine peaks separated by 97 ± 2.5 MHz, in contrast to the donor molecule that exhibits three peaks separated by 262 ± 10 MHz. Atomistic tight-binding simulations confirm the large hyperfine interaction strength in the 2P molecule with an interdonor separation of ~0.7 nm, consistent with lithographic scanning tunneling microscopy images of the 2P site during device fabrication. We discuss the viability of using donor molecules for built-in addressability of electron spin qubits in silicon.
format Online
Article
Text
id pubmed-6044739
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-60447392018-07-19 Addressable electron spin resonance using donors and donor molecules in silicon Hile, Samuel J. Fricke, Lukas House, Matthew G. Peretz, Eldad Chen, Chin Yi Wang, Yu Broome, Matthew Gorman, Samuel K. Keizer, Joris G. Rahman, Rajib Simmons, Michelle Y. Sci Adv Research Articles Phosphorus donor impurities in silicon are a promising candidate for solid-state quantum computing due to their exceptionally long coherence times and high fidelities. However, individual addressability of exchange coupled donors with separations ~15 nm is challenging. We show that by using atomic precision lithography, we can place a single P donor next to a 2P molecule 16 ± 1 nm apart and use their distinctive hyperfine coupling strengths to address qubits at vastly different resonance frequencies. In particular, the single donor yields two hyperfine peaks separated by 97 ± 2.5 MHz, in contrast to the donor molecule that exhibits three peaks separated by 262 ± 10 MHz. Atomistic tight-binding simulations confirm the large hyperfine interaction strength in the 2P molecule with an interdonor separation of ~0.7 nm, consistent with lithographic scanning tunneling microscopy images of the 2P site during device fabrication. We discuss the viability of using donor molecules for built-in addressability of electron spin qubits in silicon. American Association for the Advancement of Science 2018-07-13 /pmc/articles/PMC6044739/ /pubmed/30027114 http://dx.doi.org/10.1126/sciadv.aaq1459 Text en Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Hile, Samuel J.
Fricke, Lukas
House, Matthew G.
Peretz, Eldad
Chen, Chin Yi
Wang, Yu
Broome, Matthew
Gorman, Samuel K.
Keizer, Joris G.
Rahman, Rajib
Simmons, Michelle Y.
Addressable electron spin resonance using donors and donor molecules in silicon
title Addressable electron spin resonance using donors and donor molecules in silicon
title_full Addressable electron spin resonance using donors and donor molecules in silicon
title_fullStr Addressable electron spin resonance using donors and donor molecules in silicon
title_full_unstemmed Addressable electron spin resonance using donors and donor molecules in silicon
title_short Addressable electron spin resonance using donors and donor molecules in silicon
title_sort addressable electron spin resonance using donors and donor molecules in silicon
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044739/
https://www.ncbi.nlm.nih.gov/pubmed/30027114
http://dx.doi.org/10.1126/sciadv.aaq1459
work_keys_str_mv AT hilesamuelj addressableelectronspinresonanceusingdonorsanddonormoleculesinsilicon
AT frickelukas addressableelectronspinresonanceusingdonorsanddonormoleculesinsilicon
AT housematthewg addressableelectronspinresonanceusingdonorsanddonormoleculesinsilicon
AT peretzeldad addressableelectronspinresonanceusingdonorsanddonormoleculesinsilicon
AT chenchinyi addressableelectronspinresonanceusingdonorsanddonormoleculesinsilicon
AT wangyu addressableelectronspinresonanceusingdonorsanddonormoleculesinsilicon
AT broomematthew addressableelectronspinresonanceusingdonorsanddonormoleculesinsilicon
AT gormansamuelk addressableelectronspinresonanceusingdonorsanddonormoleculesinsilicon
AT keizerjorisg addressableelectronspinresonanceusingdonorsanddonormoleculesinsilicon
AT rahmanrajib addressableelectronspinresonanceusingdonorsanddonormoleculesinsilicon
AT simmonsmichelley addressableelectronspinresonanceusingdonorsanddonormoleculesinsilicon