Cargando…
Zein Microneedles for Transcutaneous Vaccine Delivery: Fabrication, Characterization, and in Vivo Evaluation Using Ovalbumin as the Model Antigen
[Image: see text] Transcutaneous antigen administration provides an alternative to invasive syringe injections. The objective of this study was to investigate the feasibility of fabrication and antigen delivery using microneedles made from corn protein, zein. Micromolding technique was used to cast...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044761/ https://www.ncbi.nlm.nih.gov/pubmed/30023631 http://dx.doi.org/10.1021/acsomega.7b00343 |
_version_ | 1783339536080699392 |
---|---|
author | Bhatnagar, Shubhmita Chawla, Sumeet Rajesh Kulkarni, Onkar Prakash Venuganti, Venkata Vamsi Krishna |
author_facet | Bhatnagar, Shubhmita Chawla, Sumeet Rajesh Kulkarni, Onkar Prakash Venuganti, Venkata Vamsi Krishna |
author_sort | Bhatnagar, Shubhmita |
collection | PubMed |
description | [Image: see text] Transcutaneous antigen administration provides an alternative to invasive syringe injections. The objective of this study was to investigate the feasibility of fabrication and antigen delivery using microneedles made from corn protein, zein. Micromolding technique was used to cast cone-shaped zein microneedles (ZMNs). The insertion of ZMNs and the delivery of the model antigen, ovalbumin (OVA), into the skin was confirmed by histological examination and confocal microscopy. In addition, a significantly (p < 0.05) lower bacterial skin penetration was observed after ZMN application compared with hypodermic syringe application. OVA coated on ZMNs was stable after storage under ambient and refrigerator conditions. Transcutaneous immunization studies showed significantly (p < 0.001) greater antibody titers (total IgG, IgG1, and IgG2a) after the application of OVA-coated ZMNs and OVA intradermal injection compared with the control group. Taken together, antigen-coated ZMNs can be developed for transcutaneous vaccine delivery. |
format | Online Article Text |
id | pubmed-6044761 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-60447612018-07-16 Zein Microneedles for Transcutaneous Vaccine Delivery: Fabrication, Characterization, and in Vivo Evaluation Using Ovalbumin as the Model Antigen Bhatnagar, Shubhmita Chawla, Sumeet Rajesh Kulkarni, Onkar Prakash Venuganti, Venkata Vamsi Krishna ACS Omega [Image: see text] Transcutaneous antigen administration provides an alternative to invasive syringe injections. The objective of this study was to investigate the feasibility of fabrication and antigen delivery using microneedles made from corn protein, zein. Micromolding technique was used to cast cone-shaped zein microneedles (ZMNs). The insertion of ZMNs and the delivery of the model antigen, ovalbumin (OVA), into the skin was confirmed by histological examination and confocal microscopy. In addition, a significantly (p < 0.05) lower bacterial skin penetration was observed after ZMN application compared with hypodermic syringe application. OVA coated on ZMNs was stable after storage under ambient and refrigerator conditions. Transcutaneous immunization studies showed significantly (p < 0.001) greater antibody titers (total IgG, IgG1, and IgG2a) after the application of OVA-coated ZMNs and OVA intradermal injection compared with the control group. Taken together, antigen-coated ZMNs can be developed for transcutaneous vaccine delivery. American Chemical Society 2017-04-06 /pmc/articles/PMC6044761/ /pubmed/30023631 http://dx.doi.org/10.1021/acsomega.7b00343 Text en Copyright © 2017 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Bhatnagar, Shubhmita Chawla, Sumeet Rajesh Kulkarni, Onkar Prakash Venuganti, Venkata Vamsi Krishna Zein Microneedles for Transcutaneous Vaccine Delivery: Fabrication, Characterization, and in Vivo Evaluation Using Ovalbumin as the Model Antigen |
title | Zein Microneedles for Transcutaneous Vaccine Delivery: Fabrication, Characterization,
and in Vivo Evaluation Using Ovalbumin as the Model Antigen |
title_full | Zein Microneedles for Transcutaneous Vaccine Delivery: Fabrication, Characterization,
and in Vivo Evaluation Using Ovalbumin as the Model Antigen |
title_fullStr | Zein Microneedles for Transcutaneous Vaccine Delivery: Fabrication, Characterization,
and in Vivo Evaluation Using Ovalbumin as the Model Antigen |
title_full_unstemmed | Zein Microneedles for Transcutaneous Vaccine Delivery: Fabrication, Characterization,
and in Vivo Evaluation Using Ovalbumin as the Model Antigen |
title_short | Zein Microneedles for Transcutaneous Vaccine Delivery: Fabrication, Characterization,
and in Vivo Evaluation Using Ovalbumin as the Model Antigen |
title_sort | zein microneedles for transcutaneous vaccine delivery: fabrication, characterization,
and in vivo evaluation using ovalbumin as the model antigen |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044761/ https://www.ncbi.nlm.nih.gov/pubmed/30023631 http://dx.doi.org/10.1021/acsomega.7b00343 |
work_keys_str_mv | AT bhatnagarshubhmita zeinmicroneedlesfortranscutaneousvaccinedeliveryfabricationcharacterizationandinvivoevaluationusingovalbuminasthemodelantigen AT chawlasumeetrajesh zeinmicroneedlesfortranscutaneousvaccinedeliveryfabricationcharacterizationandinvivoevaluationusingovalbuminasthemodelantigen AT kulkarnionkarprakash zeinmicroneedlesfortranscutaneousvaccinedeliveryfabricationcharacterizationandinvivoevaluationusingovalbuminasthemodelantigen AT venugantivenkatavamsikrishna zeinmicroneedlesfortranscutaneousvaccinedeliveryfabricationcharacterizationandinvivoevaluationusingovalbuminasthemodelantigen |