Cargando…
Glycosaminoglycan Conjugation for Improving the Duration of Therapeutic Action of Glucagon-Like Peptide-1
[Image: see text] Glucagon-like peptide-1 (GLP-1) is an incretin peptide that plays a crucial role in lowering blood glucose levels and holds promise for treating type II diabetes. In this study, we synthesized GLP-1 derivatives that were conjugated with glycosaminoglycans (GAGs), i.e., chondroitin...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044901/ https://www.ncbi.nlm.nih.gov/pubmed/30023916 http://dx.doi.org/10.1021/acsomega.8b00467 |
Sumario: | [Image: see text] Glucagon-like peptide-1 (GLP-1) is an incretin peptide that plays a crucial role in lowering blood glucose levels and holds promise for treating type II diabetes. In this study, we synthesized GLP-1 derivatives that were conjugated with glycosaminoglycans (GAGs), i.e., chondroitin (CH) or heparosan (HPN), to address the major limitation in their clinical use of GLP-1, which is its short half-life in the body. After exploring a variety of CHs with different molecular sizes and heterobifunctional linkers having different alkyl chains, we obtained CH-conjugated GLP-1 derivatives that stayed in blood circulation much longer (T(1/2 elim) > 25 h) than unconjugated GLP-1 and showed blood glucose-lowering efficacy up to 120 h after subcutaneous injection in mice. By using the same optimized linker design, we eventually obtained a HPN-conjugated GLP-1 derivative with efficacy lasting 144 h. These results demonstrate that conjugation with GAG is a promising strategy for improving the duration of peptide drugs. |
---|