Cargando…

Infrared Nanospectroscopy of Phospholipid and Surfactin Monolayer Domains

[Image: see text] A main challenge in understanding the structure of a cell membrane and its interactions with drugs is the ability to chemically study the different molecular species on the nanoscale. We have achieved this for a model system consisting of mixed monolayers (MLs) of the biologically...

Descripción completa

Detalles Bibliográficos
Autores principales: Kästner, Bernd, Johnson, C. Magnus, Hermann, Peter, Kruskopf, Mattias, Pierz, Klaus, Hoehl, Arne, Hornemann, Andrea, Ulrich, Georg, Fehmel, Jakob, Patoka, Piotr, Rühl, Eckart, Ulm, Gerhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044929/
https://www.ncbi.nlm.nih.gov/pubmed/30023886
http://dx.doi.org/10.1021/acsomega.7b01931
Descripción
Sumario:[Image: see text] A main challenge in understanding the structure of a cell membrane and its interactions with drugs is the ability to chemically study the different molecular species on the nanoscale. We have achieved this for a model system consisting of mixed monolayers (MLs) of the biologically relevant phospholipid 1,2-distearoyl-sn-glycero-phosphatidylcholine and the antibiotic surfactin. By employing nano-infrared (IR) microscopy and spectroscopy in combination with atomic force microscopy imaging, it was possible to identify and chemically detect domain formation of the two constituents as well as to obtain IR spectra of these species with a spatial resolution on the nanoscale. A novel method to enhance the near-field imaging contrast of organic MLs by plasmon interferometry is proposed and demonstrated. In this technique, the organic layer is deposited on gold and ML graphene substrates, the latter of which supports propagating surface plasmons. Plasmon reflections arising from changes in the dielectric environment provided by the organic layer lead to an additional contrast mechanism. Using this approach, the interfacial region between surfactin and the phospholipid has been mapped and a transition region is identified.