Cargando…
Infrared Nanospectroscopy of Phospholipid and Surfactin Monolayer Domains
[Image: see text] A main challenge in understanding the structure of a cell membrane and its interactions with drugs is the ability to chemically study the different molecular species on the nanoscale. We have achieved this for a model system consisting of mixed monolayers (MLs) of the biologically...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044929/ https://www.ncbi.nlm.nih.gov/pubmed/30023886 http://dx.doi.org/10.1021/acsomega.7b01931 |
_version_ | 1783339575008034816 |
---|---|
author | Kästner, Bernd Johnson, C. Magnus Hermann, Peter Kruskopf, Mattias Pierz, Klaus Hoehl, Arne Hornemann, Andrea Ulrich, Georg Fehmel, Jakob Patoka, Piotr Rühl, Eckart Ulm, Gerhard |
author_facet | Kästner, Bernd Johnson, C. Magnus Hermann, Peter Kruskopf, Mattias Pierz, Klaus Hoehl, Arne Hornemann, Andrea Ulrich, Georg Fehmel, Jakob Patoka, Piotr Rühl, Eckart Ulm, Gerhard |
author_sort | Kästner, Bernd |
collection | PubMed |
description | [Image: see text] A main challenge in understanding the structure of a cell membrane and its interactions with drugs is the ability to chemically study the different molecular species on the nanoscale. We have achieved this for a model system consisting of mixed monolayers (MLs) of the biologically relevant phospholipid 1,2-distearoyl-sn-glycero-phosphatidylcholine and the antibiotic surfactin. By employing nano-infrared (IR) microscopy and spectroscopy in combination with atomic force microscopy imaging, it was possible to identify and chemically detect domain formation of the two constituents as well as to obtain IR spectra of these species with a spatial resolution on the nanoscale. A novel method to enhance the near-field imaging contrast of organic MLs by plasmon interferometry is proposed and demonstrated. In this technique, the organic layer is deposited on gold and ML graphene substrates, the latter of which supports propagating surface plasmons. Plasmon reflections arising from changes in the dielectric environment provided by the organic layer lead to an additional contrast mechanism. Using this approach, the interfacial region between surfactin and the phospholipid has been mapped and a transition region is identified. |
format | Online Article Text |
id | pubmed-6044929 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-60449292018-07-16 Infrared Nanospectroscopy of Phospholipid and Surfactin Monolayer Domains Kästner, Bernd Johnson, C. Magnus Hermann, Peter Kruskopf, Mattias Pierz, Klaus Hoehl, Arne Hornemann, Andrea Ulrich, Georg Fehmel, Jakob Patoka, Piotr Rühl, Eckart Ulm, Gerhard ACS Omega [Image: see text] A main challenge in understanding the structure of a cell membrane and its interactions with drugs is the ability to chemically study the different molecular species on the nanoscale. We have achieved this for a model system consisting of mixed monolayers (MLs) of the biologically relevant phospholipid 1,2-distearoyl-sn-glycero-phosphatidylcholine and the antibiotic surfactin. By employing nano-infrared (IR) microscopy and spectroscopy in combination with atomic force microscopy imaging, it was possible to identify and chemically detect domain formation of the two constituents as well as to obtain IR spectra of these species with a spatial resolution on the nanoscale. A novel method to enhance the near-field imaging contrast of organic MLs by plasmon interferometry is proposed and demonstrated. In this technique, the organic layer is deposited on gold and ML graphene substrates, the latter of which supports propagating surface plasmons. Plasmon reflections arising from changes in the dielectric environment provided by the organic layer lead to an additional contrast mechanism. Using this approach, the interfacial region between surfactin and the phospholipid has been mapped and a transition region is identified. American Chemical Society 2018-04-12 /pmc/articles/PMC6044929/ /pubmed/30023886 http://dx.doi.org/10.1021/acsomega.7b01931 Text en Copyright © 2018 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Kästner, Bernd Johnson, C. Magnus Hermann, Peter Kruskopf, Mattias Pierz, Klaus Hoehl, Arne Hornemann, Andrea Ulrich, Georg Fehmel, Jakob Patoka, Piotr Rühl, Eckart Ulm, Gerhard Infrared Nanospectroscopy of Phospholipid and Surfactin Monolayer Domains |
title | Infrared Nanospectroscopy of Phospholipid and Surfactin
Monolayer Domains |
title_full | Infrared Nanospectroscopy of Phospholipid and Surfactin
Monolayer Domains |
title_fullStr | Infrared Nanospectroscopy of Phospholipid and Surfactin
Monolayer Domains |
title_full_unstemmed | Infrared Nanospectroscopy of Phospholipid and Surfactin
Monolayer Domains |
title_short | Infrared Nanospectroscopy of Phospholipid and Surfactin
Monolayer Domains |
title_sort | infrared nanospectroscopy of phospholipid and surfactin
monolayer domains |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044929/ https://www.ncbi.nlm.nih.gov/pubmed/30023886 http://dx.doi.org/10.1021/acsomega.7b01931 |
work_keys_str_mv | AT kastnerbernd infrarednanospectroscopyofphospholipidandsurfactinmonolayerdomains AT johnsoncmagnus infrarednanospectroscopyofphospholipidandsurfactinmonolayerdomains AT hermannpeter infrarednanospectroscopyofphospholipidandsurfactinmonolayerdomains AT kruskopfmattias infrarednanospectroscopyofphospholipidandsurfactinmonolayerdomains AT pierzklaus infrarednanospectroscopyofphospholipidandsurfactinmonolayerdomains AT hoehlarne infrarednanospectroscopyofphospholipidandsurfactinmonolayerdomains AT hornemannandrea infrarednanospectroscopyofphospholipidandsurfactinmonolayerdomains AT ulrichgeorg infrarednanospectroscopyofphospholipidandsurfactinmonolayerdomains AT fehmeljakob infrarednanospectroscopyofphospholipidandsurfactinmonolayerdomains AT patokapiotr infrarednanospectroscopyofphospholipidandsurfactinmonolayerdomains AT ruhleckart infrarednanospectroscopyofphospholipidandsurfactinmonolayerdomains AT ulmgerhard infrarednanospectroscopyofphospholipidandsurfactinmonolayerdomains |