Cargando…
Influence of Acyl Chain Saturation on the Membrane-Binding Activity of a Short Antimicrobial Peptide
[Image: see text] Different bacterial types and their living environments can lead to different saturations in the chains of their membrane lipids. Such structural differences may influence the efficacy of antibiotics that target bacterial membranes. In this work, the effects of acyl chain saturatio...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044940/ https://www.ncbi.nlm.nih.gov/pubmed/30023555 http://dx.doi.org/10.1021/acsomega.7b01270 |
_version_ | 1783339577595920384 |
---|---|
author | Ciumac, Daniela Campbell, Richard A. Clifton, Luke A. Xu, Hai Fragneto, Giovanna Lu, Jian R. |
author_facet | Ciumac, Daniela Campbell, Richard A. Clifton, Luke A. Xu, Hai Fragneto, Giovanna Lu, Jian R. |
author_sort | Ciumac, Daniela |
collection | PubMed |
description | [Image: see text] Different bacterial types and their living environments can lead to different saturations in the chains of their membrane lipids. Such structural differences may influence the efficacy of antibiotics that target bacterial membranes. In this work, the effects of acyl chain saturation on the binding of an antimicrobial peptide G(4) have been examined as a function of the packing density of lipid monolayers by combining external reflection Fourier transform infrared (ER-FTIR) spectroscopy and neutron reflection (NR) measurements. Langmuir monolayers were formed from 1,2-dipalmitoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (DPPG) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (POPG), respectively, with the initial surface pressures controlled at 8 and 28 mN/m. A reduction in the order of the acyl chains associated with the increase in the layer thickness upon G(4) binding was revealed from ER-FTIR spectroscopy, with peptide binding reaching equilibration faster in POPG than in DPPG monolayers. Whereas the dynamic DPPG-binding process displayed a steady increase in the amide I band area, the POPG-binding process showed little change in the amide area after the initial period. The peptide amide I area from ER-FTIR spectroscopy could be linearly correlated with the adsorbed G(4) amount from NR, irrespective of time, initial pressure, or chain saturation, with clearly more peptide incorporated into the DPPG monolayer. Furthermore, NR revealed that although the peptide was associated with both POPG and DPPG lipid monolayers, it was more extensively distributed in the latter, showing that acyl chain saturation clearly promoted peptide binding and structural disruption. |
format | Online Article Text |
id | pubmed-6044940 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-60449402018-07-16 Influence of Acyl Chain Saturation on the Membrane-Binding Activity of a Short Antimicrobial Peptide Ciumac, Daniela Campbell, Richard A. Clifton, Luke A. Xu, Hai Fragneto, Giovanna Lu, Jian R. ACS Omega [Image: see text] Different bacterial types and their living environments can lead to different saturations in the chains of their membrane lipids. Such structural differences may influence the efficacy of antibiotics that target bacterial membranes. In this work, the effects of acyl chain saturation on the binding of an antimicrobial peptide G(4) have been examined as a function of the packing density of lipid monolayers by combining external reflection Fourier transform infrared (ER-FTIR) spectroscopy and neutron reflection (NR) measurements. Langmuir monolayers were formed from 1,2-dipalmitoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (DPPG) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (POPG), respectively, with the initial surface pressures controlled at 8 and 28 mN/m. A reduction in the order of the acyl chains associated with the increase in the layer thickness upon G(4) binding was revealed from ER-FTIR spectroscopy, with peptide binding reaching equilibration faster in POPG than in DPPG monolayers. Whereas the dynamic DPPG-binding process displayed a steady increase in the amide I band area, the POPG-binding process showed little change in the amide area after the initial period. The peptide amide I area from ER-FTIR spectroscopy could be linearly correlated with the adsorbed G(4) amount from NR, irrespective of time, initial pressure, or chain saturation, with clearly more peptide incorporated into the DPPG monolayer. Furthermore, NR revealed that although the peptide was associated with both POPG and DPPG lipid monolayers, it was more extensively distributed in the latter, showing that acyl chain saturation clearly promoted peptide binding and structural disruption. American Chemical Society 2017-11-01 /pmc/articles/PMC6044940/ /pubmed/30023555 http://dx.doi.org/10.1021/acsomega.7b01270 Text en Copyright © 2017 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Ciumac, Daniela Campbell, Richard A. Clifton, Luke A. Xu, Hai Fragneto, Giovanna Lu, Jian R. Influence of Acyl Chain Saturation on the Membrane-Binding Activity of a Short Antimicrobial Peptide |
title | Influence of Acyl Chain Saturation on the Membrane-Binding
Activity of a Short Antimicrobial Peptide |
title_full | Influence of Acyl Chain Saturation on the Membrane-Binding
Activity of a Short Antimicrobial Peptide |
title_fullStr | Influence of Acyl Chain Saturation on the Membrane-Binding
Activity of a Short Antimicrobial Peptide |
title_full_unstemmed | Influence of Acyl Chain Saturation on the Membrane-Binding
Activity of a Short Antimicrobial Peptide |
title_short | Influence of Acyl Chain Saturation on the Membrane-Binding
Activity of a Short Antimicrobial Peptide |
title_sort | influence of acyl chain saturation on the membrane-binding
activity of a short antimicrobial peptide |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044940/ https://www.ncbi.nlm.nih.gov/pubmed/30023555 http://dx.doi.org/10.1021/acsomega.7b01270 |
work_keys_str_mv | AT ciumacdaniela influenceofacylchainsaturationonthemembranebindingactivityofashortantimicrobialpeptide AT campbellricharda influenceofacylchainsaturationonthemembranebindingactivityofashortantimicrobialpeptide AT cliftonlukea influenceofacylchainsaturationonthemembranebindingactivityofashortantimicrobialpeptide AT xuhai influenceofacylchainsaturationonthemembranebindingactivityofashortantimicrobialpeptide AT fragnetogiovanna influenceofacylchainsaturationonthemembranebindingactivityofashortantimicrobialpeptide AT lujianr influenceofacylchainsaturationonthemembranebindingactivityofashortantimicrobialpeptide |