Cargando…
Photodynamic Inactivation of Multidrug-Resistant Staphylococcus aureus Using Hybrid Photosensitizers Based on Amphiphilic Block Copolymer-Functionalized Gold Nanoparticles
[Image: see text] Multidrug-resistant Staphylococcus aureus (MRSA) has become one of the major causes of various infections, leading to morbidity in both healthy and immune-compromised populations worldwide. Herein, we report a novel type of hybrid photosensitizer based on amphiphilic block copolyme...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044965/ https://www.ncbi.nlm.nih.gov/pubmed/30023747 http://dx.doi.org/10.1021/acsomega.7b00738 |
Sumario: | [Image: see text] Multidrug-resistant Staphylococcus aureus (MRSA) has become one of the major causes of various infections, leading to morbidity in both healthy and immune-compromised populations worldwide. Herein, we report a novel type of hybrid photosensitizer based on amphiphilic block copolymer-functionalized gold nanoparticles. The design of the nanoparticles provides a facile means to incorporate hydrophobic photosensitizing molecules for use in aqueous media. The hybrid photosensitizers display greatly enhanced singlet oxygen generation and outstanding photodynamic inactivation (PDI) efficacy against MRSA under light illumination. These hybrid photosensitizers greatly improve the effectiveness of PDI against MRSA while not involving antibiotics. |
---|