Cargando…

Phytochemicals as Dynamic Surface Ligands To Control Nanoparticle–Protein Interactions

[Image: see text] The rapid formation of the protein corona on to the nanoparticle (NP) surface is the key that confers biological identity to NPs and subsequently dictates their fate both in vitro and in vivo. Despite significant efforts, the inability to control the spontaneous interaction of seru...

Descripción completa

Detalles Bibliográficos
Autores principales: Abraham, Amanda N., Sharma, Tarun K., Bansal, Vipul, Shukla, Ravi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6045335/
https://www.ncbi.nlm.nih.gov/pubmed/30023827
http://dx.doi.org/10.1021/acsomega.7b01878
_version_ 1783339646344757248
author Abraham, Amanda N.
Sharma, Tarun K.
Bansal, Vipul
Shukla, Ravi
author_facet Abraham, Amanda N.
Sharma, Tarun K.
Bansal, Vipul
Shukla, Ravi
author_sort Abraham, Amanda N.
collection PubMed
description [Image: see text] The rapid formation of the protein corona on to the nanoparticle (NP) surface is the key that confers biological identity to NPs and subsequently dictates their fate both in vitro and in vivo. Despite significant efforts, the inability to control the spontaneous interaction of serum proteins with the administered NPs remains a major constraint in clinical translation of nanomedicines. The ligands present on the NP surface offer promise in controlling their biological interactions; however, their influence on the NP–protein interaction is not well-understood. The current study investigates the potential of phytochemical-capped silver nanoparticles (AgNPs) toward allowing a control over NP interactions with the human serum albumin (HSA), the most abundant protein in the biological fluids. Specifically, we demonstrate the ability of curcumin (Cur) and epigallocatechin-3-gallate (EGCG) to independently act as reducing agents to produce phytochemical-capped AgNPs that show biologically desirable interactions with HSA. The key finding of our study is that the phytochemical-capped AgNPs initially interact with HSA more strongly compared to the citrate-stabilized AgNPs; however, the resultant NP–HSA complexes are less stable in the case of the former, which causes a lesser degree of changes in the protein conformation during interactions. Further, the choice of the phytochemical allows control over NP–HSA interactions, such that Cur- and EGCG-capped AgNPs interacted with HSA in a static versus dynamic manner, respectively. The diversity of the functional groups present in natural phytochemicals and their potential as in situ capping ligands during synthesis offer new opportunities in controlling the interactions of NPs with complex biological fluids, with implications in nanodiagnostics and nanomedicine.
format Online
Article
Text
id pubmed-6045335
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-60453352018-07-16 Phytochemicals as Dynamic Surface Ligands To Control Nanoparticle–Protein Interactions Abraham, Amanda N. Sharma, Tarun K. Bansal, Vipul Shukla, Ravi ACS Omega [Image: see text] The rapid formation of the protein corona on to the nanoparticle (NP) surface is the key that confers biological identity to NPs and subsequently dictates their fate both in vitro and in vivo. Despite significant efforts, the inability to control the spontaneous interaction of serum proteins with the administered NPs remains a major constraint in clinical translation of nanomedicines. The ligands present on the NP surface offer promise in controlling their biological interactions; however, their influence on the NP–protein interaction is not well-understood. The current study investigates the potential of phytochemical-capped silver nanoparticles (AgNPs) toward allowing a control over NP interactions with the human serum albumin (HSA), the most abundant protein in the biological fluids. Specifically, we demonstrate the ability of curcumin (Cur) and epigallocatechin-3-gallate (EGCG) to independently act as reducing agents to produce phytochemical-capped AgNPs that show biologically desirable interactions with HSA. The key finding of our study is that the phytochemical-capped AgNPs initially interact with HSA more strongly compared to the citrate-stabilized AgNPs; however, the resultant NP–HSA complexes are less stable in the case of the former, which causes a lesser degree of changes in the protein conformation during interactions. Further, the choice of the phytochemical allows control over NP–HSA interactions, such that Cur- and EGCG-capped AgNPs interacted with HSA in a static versus dynamic manner, respectively. The diversity of the functional groups present in natural phytochemicals and their potential as in situ capping ligands during synthesis offer new opportunities in controlling the interactions of NPs with complex biological fluids, with implications in nanodiagnostics and nanomedicine. American Chemical Society 2018-02-22 /pmc/articles/PMC6045335/ /pubmed/30023827 http://dx.doi.org/10.1021/acsomega.7b01878 Text en Copyright © 2018 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.
spellingShingle Abraham, Amanda N.
Sharma, Tarun K.
Bansal, Vipul
Shukla, Ravi
Phytochemicals as Dynamic Surface Ligands To Control Nanoparticle–Protein Interactions
title Phytochemicals as Dynamic Surface Ligands To Control Nanoparticle–Protein Interactions
title_full Phytochemicals as Dynamic Surface Ligands To Control Nanoparticle–Protein Interactions
title_fullStr Phytochemicals as Dynamic Surface Ligands To Control Nanoparticle–Protein Interactions
title_full_unstemmed Phytochemicals as Dynamic Surface Ligands To Control Nanoparticle–Protein Interactions
title_short Phytochemicals as Dynamic Surface Ligands To Control Nanoparticle–Protein Interactions
title_sort phytochemicals as dynamic surface ligands to control nanoparticle–protein interactions
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6045335/
https://www.ncbi.nlm.nih.gov/pubmed/30023827
http://dx.doi.org/10.1021/acsomega.7b01878
work_keys_str_mv AT abrahamamandan phytochemicalsasdynamicsurfaceligandstocontrolnanoparticleproteininteractions
AT sharmatarunk phytochemicalsasdynamicsurfaceligandstocontrolnanoparticleproteininteractions
AT bansalvipul phytochemicalsasdynamicsurfaceligandstocontrolnanoparticleproteininteractions
AT shuklaravi phytochemicalsasdynamicsurfaceligandstocontrolnanoparticleproteininteractions