Cargando…
Prediction of Compound Profiling Matrices Using Machine Learning
[Image: see text] Screening of compound libraries against panels of targets yields profiling matrices. Such matrices typically contain structurally diverse screening compounds, large numbers of inactives, and small numbers of hits per assay. As such, they represent interesting and challenging test c...
Autores principales: | Rodríguez-Pérez, Raquel, Miyao, Tomoyuki, Jasial, Swarit, Vogt, Martin, Bajorath, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6045364/ https://www.ncbi.nlm.nih.gov/pubmed/30023899 http://dx.doi.org/10.1021/acsomega.8b00462 |
Ejemplares similares
-
Computationally derived compound profiling matrices
por: Vogt, Martin, et al.
Publicado: (2018) -
Extracting Compound Profiling Matrices from Screening
Data
por: Vogt, Martin, et al.
Publicado: (2018) -
Promiscuity progression of bioactive compounds over time
por: Hu, Ye, et al.
Publicado: (2015) -
Determining the Degree of Promiscuity of Extensively Assayed Compounds
por: Jasial, Swarit, et al.
Publicado: (2016) -
Activity-relevant similarity values for fingerprints and implications for similarity searching
por: Jasial, Swarit, et al.
Publicado: (2016)