Cargando…
Support Vector Machine Classification and Regression Prioritize Different Structural Features for Binary Compound Activity and Potency Value Prediction
[Image: see text] In computational chemistry and chemoinformatics, the support vector machine (SVM) algorithm is among the most widely used machine learning methods for the identification of new active compounds. In addition, support vector regression (SVR) has become a preferred approach for modeli...
Autores principales: | Rodríguez-Pérez, Raquel, Vogt, Martin, Bajorath, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6045367/ https://www.ncbi.nlm.nih.gov/pubmed/30023518 http://dx.doi.org/10.1021/acsomega.7b01079 |
Ejemplares similares
-
Systematic Artifacts in Support Vector Regression-Based Compound Potency Prediction Revealed by Statistical and Activity Landscape Analysis
por: Balfer, Jenny, et al.
Publicado: (2015) -
Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2020) -
Potency-directed similarity searching using support vector machines
por: Heikamp, Kathrin, et al.
Publicado: (2012) -
Evolution of Support Vector Machine and Regression Modeling in Chemoinformatics and Drug Discovery
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2022) -
Influence of Varying Training Set Composition and
Size on Support Vector Machine-Based Prediction of Active Compounds
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2017)