Cargando…
Silk Fibroin Acts as a Self-Emulsifier to Prepare Hierarchically Porous Silk Fibroin Scaffolds through Emulsion–Ice Dual Templates
[Image: see text] Silk fibroin (SF) has shown enormous potentials in various fields; however, application of SF in emulsion technology is quite limited. Here, we use SF as a self-emulsifier to form an oil-in-water (O/W) emulsion by emulsifying 1-butanol in SF aqueous solution. This showed that SF po...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6045383/ https://www.ncbi.nlm.nih.gov/pubmed/30023868 http://dx.doi.org/10.1021/acsomega.7b01874 |
_version_ | 1783339657523625984 |
---|---|
author | Wen, Jianchuan Yao, Jinrong Chen, Xin Shao, Zhengzhong |
author_facet | Wen, Jianchuan Yao, Jinrong Chen, Xin Shao, Zhengzhong |
author_sort | Wen, Jianchuan |
collection | PubMed |
description | [Image: see text] Silk fibroin (SF) has shown enormous potentials in various fields; however, application of SF in emulsion technology is quite limited. Here, we use SF as a self-emulsifier to form an oil-in-water (O/W) emulsion by emulsifying 1-butanol in SF aqueous solution. This showed that SF possessed strong surface activity to stabilize the O/W emulsion without the need for any other surface-active agent until its solidification because of 1-butanol-induced conformational transition of SF to β-sheet. After freezing the preformed emulsions at −20 °C, robust three-dimensional porous SF scaffolds were prepared without the need for any further post-treatment. The evolution from the O/W emulsion to porous scaffold formation under freezing was tracked, and an emulsion–ice dual template mechanism was proposed for scaffold formation, based on which SF scaffolds with controllable hierarchically porous structures were achieved by tuning the dispersed droplet volume fraction. Furthermore, SF scaffolds with hierarchical porosity showed significantly higher bioactivity toward L929 fibroblasts than that of SF scaffolds with mono macroporosity, highlighting the great asset of this hierarchically porous SF scaffold for broad applications in tissue engineering. Therefore, the strong surface-active characteristic of SF presented here, in addition to its distinct advantages, sheds a bright light on the application of SF in the vast range of emulsion technologies, especially in cosmetic-, food-, and biomedical-related areas. |
format | Online Article Text |
id | pubmed-6045383 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-60453832018-07-16 Silk Fibroin Acts as a Self-Emulsifier to Prepare Hierarchically Porous Silk Fibroin Scaffolds through Emulsion–Ice Dual Templates Wen, Jianchuan Yao, Jinrong Chen, Xin Shao, Zhengzhong ACS Omega [Image: see text] Silk fibroin (SF) has shown enormous potentials in various fields; however, application of SF in emulsion technology is quite limited. Here, we use SF as a self-emulsifier to form an oil-in-water (O/W) emulsion by emulsifying 1-butanol in SF aqueous solution. This showed that SF possessed strong surface activity to stabilize the O/W emulsion without the need for any other surface-active agent until its solidification because of 1-butanol-induced conformational transition of SF to β-sheet. After freezing the preformed emulsions at −20 °C, robust three-dimensional porous SF scaffolds were prepared without the need for any further post-treatment. The evolution from the O/W emulsion to porous scaffold formation under freezing was tracked, and an emulsion–ice dual template mechanism was proposed for scaffold formation, based on which SF scaffolds with controllable hierarchically porous structures were achieved by tuning the dispersed droplet volume fraction. Furthermore, SF scaffolds with hierarchical porosity showed significantly higher bioactivity toward L929 fibroblasts than that of SF scaffolds with mono macroporosity, highlighting the great asset of this hierarchically porous SF scaffold for broad applications in tissue engineering. Therefore, the strong surface-active characteristic of SF presented here, in addition to its distinct advantages, sheds a bright light on the application of SF in the vast range of emulsion technologies, especially in cosmetic-, food-, and biomedical-related areas. American Chemical Society 2018-03-21 /pmc/articles/PMC6045383/ /pubmed/30023868 http://dx.doi.org/10.1021/acsomega.7b01874 Text en Copyright © 2018 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Wen, Jianchuan Yao, Jinrong Chen, Xin Shao, Zhengzhong Silk Fibroin Acts as a Self-Emulsifier to Prepare Hierarchically Porous Silk Fibroin Scaffolds through Emulsion–Ice Dual Templates |
title | Silk Fibroin Acts as a Self-Emulsifier to Prepare
Hierarchically Porous Silk Fibroin Scaffolds through Emulsion–Ice Dual Templates |
title_full | Silk Fibroin Acts as a Self-Emulsifier to Prepare
Hierarchically Porous Silk Fibroin Scaffolds through Emulsion–Ice Dual Templates |
title_fullStr | Silk Fibroin Acts as a Self-Emulsifier to Prepare
Hierarchically Porous Silk Fibroin Scaffolds through Emulsion–Ice Dual Templates |
title_full_unstemmed | Silk Fibroin Acts as a Self-Emulsifier to Prepare
Hierarchically Porous Silk Fibroin Scaffolds through Emulsion–Ice Dual Templates |
title_short | Silk Fibroin Acts as a Self-Emulsifier to Prepare
Hierarchically Porous Silk Fibroin Scaffolds through Emulsion–Ice Dual Templates |
title_sort | silk fibroin acts as a self-emulsifier to prepare
hierarchically porous silk fibroin scaffolds through emulsion–ice dual templates |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6045383/ https://www.ncbi.nlm.nih.gov/pubmed/30023868 http://dx.doi.org/10.1021/acsomega.7b01874 |
work_keys_str_mv | AT wenjianchuan silkfibroinactsasaselfemulsifiertopreparehierarchicallyporoussilkfibroinscaffoldsthroughemulsionicedualtemplates AT yaojinrong silkfibroinactsasaselfemulsifiertopreparehierarchicallyporoussilkfibroinscaffoldsthroughemulsionicedualtemplates AT chenxin silkfibroinactsasaselfemulsifiertopreparehierarchicallyporoussilkfibroinscaffoldsthroughemulsionicedualtemplates AT shaozhengzhong silkfibroinactsasaselfemulsifiertopreparehierarchicallyporoussilkfibroinscaffoldsthroughemulsionicedualtemplates |