Cargando…
Sensing Chemical Warfare Agent Simulants via Photonic Crystals of the Morpho didius Butterfly
[Image: see text] The rapid and portable detection of trace chemical warfare agents (CWAs) remains a challenge for the international security and monitoring community. This work reports the first use of natural photonic crystals (PhCs) as vapor sensors for CWA simulants. Dimethyl methylphosphonate,...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6045417/ https://www.ncbi.nlm.nih.gov/pubmed/30023581 http://dx.doi.org/10.1021/acsomega.7b01680 |
_version_ | 1783339665437229056 |
---|---|
author | Kittle, Joshua D. Fisher, Benjamin P. Esparza, Anthony J. Morey, Aimee M. Iacono, Scott T. |
author_facet | Kittle, Joshua D. Fisher, Benjamin P. Esparza, Anthony J. Morey, Aimee M. Iacono, Scott T. |
author_sort | Kittle, Joshua D. |
collection | PubMed |
description | [Image: see text] The rapid and portable detection of trace chemical warfare agents (CWAs) remains a challenge for the international security and monitoring community. This work reports the first use of natural photonic crystals (PhCs) as vapor sensors for CWA simulants. Dimethyl methylphosphonate, a nerve agent simulant, and dichloropentane, a mustard gas simulant, were successfully detected at the parts per million level by processing visible light reflected from the PhC inherent to the wing scales of the Morpho didius butterfly. Additionally, modeling of this natural system suggested several parameters for enhancing the sensitivity of a synthetic PhC toward CWA simulants, including materials selection, structure, and spacing of the PhC, and partial functionalization of the PhC toward the analyte of interest. Collectively, this study provides strategies for designing a sensitive, selective, rapid, and affordable means for CWA detection. |
format | Online Article Text |
id | pubmed-6045417 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-60454172018-07-16 Sensing Chemical Warfare Agent Simulants via Photonic Crystals of the Morpho didius Butterfly Kittle, Joshua D. Fisher, Benjamin P. Esparza, Anthony J. Morey, Aimee M. Iacono, Scott T. ACS Omega [Image: see text] The rapid and portable detection of trace chemical warfare agents (CWAs) remains a challenge for the international security and monitoring community. This work reports the first use of natural photonic crystals (PhCs) as vapor sensors for CWA simulants. Dimethyl methylphosphonate, a nerve agent simulant, and dichloropentane, a mustard gas simulant, were successfully detected at the parts per million level by processing visible light reflected from the PhC inherent to the wing scales of the Morpho didius butterfly. Additionally, modeling of this natural system suggested several parameters for enhancing the sensitivity of a synthetic PhC toward CWA simulants, including materials selection, structure, and spacing of the PhC, and partial functionalization of the PhC toward the analyte of interest. Collectively, this study provides strategies for designing a sensitive, selective, rapid, and affordable means for CWA detection. American Chemical Society 2017-11-21 /pmc/articles/PMC6045417/ /pubmed/30023581 http://dx.doi.org/10.1021/acsomega.7b01680 Text en Copyright © 2017 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Kittle, Joshua D. Fisher, Benjamin P. Esparza, Anthony J. Morey, Aimee M. Iacono, Scott T. Sensing Chemical Warfare Agent Simulants via Photonic Crystals of the Morpho didius Butterfly |
title | Sensing Chemical Warfare Agent
Simulants via Photonic
Crystals of the Morpho didius Butterfly |
title_full | Sensing Chemical Warfare Agent
Simulants via Photonic
Crystals of the Morpho didius Butterfly |
title_fullStr | Sensing Chemical Warfare Agent
Simulants via Photonic
Crystals of the Morpho didius Butterfly |
title_full_unstemmed | Sensing Chemical Warfare Agent
Simulants via Photonic
Crystals of the Morpho didius Butterfly |
title_short | Sensing Chemical Warfare Agent
Simulants via Photonic
Crystals of the Morpho didius Butterfly |
title_sort | sensing chemical warfare agent
simulants via photonic
crystals of the morpho didius butterfly |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6045417/ https://www.ncbi.nlm.nih.gov/pubmed/30023581 http://dx.doi.org/10.1021/acsomega.7b01680 |
work_keys_str_mv | AT kittlejoshuad sensingchemicalwarfareagentsimulantsviaphotoniccrystalsofthemorphodidiusbutterfly AT fisherbenjaminp sensingchemicalwarfareagentsimulantsviaphotoniccrystalsofthemorphodidiusbutterfly AT esparzaanthonyj sensingchemicalwarfareagentsimulantsviaphotoniccrystalsofthemorphodidiusbutterfly AT moreyaimeem sensingchemicalwarfareagentsimulantsviaphotoniccrystalsofthemorphodidiusbutterfly AT iaconoscottt sensingchemicalwarfareagentsimulantsviaphotoniccrystalsofthemorphodidiusbutterfly |