Cargando…

Exploring the clinical features of narcolepsy type 1 versus narcolepsy type 2 from European Narcolepsy Network database with machine learning

Narcolepsy is a rare life-long disease that exists in two forms, narcolepsy type-1 (NT1) or type-2 (NT2), but only NT1 is accepted as clearly defined entity. Both types of narcolepsies belong to the group of central hypersomnias (CH), a spectrum of poorly defined diseases with excessive daytime slee...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Zhongxing, Mayer, Geert, Dauvilliers, Yves, Plazzi, Giuseppe, Pizza, Fabio, Fronczek, Rolf, Santamaria, Joan, Partinen, Markku, Overeem, Sebastiaan, Peraita-Adrados, Rosa, da Silva, Antonio Martins, Sonka, Karel, Rio-Villegas, Rafael del, Heinzer, Raphael, Wierzbicka, Aleksandra, Young, Peter, Högl, Birgit, Bassetti, Claudio L., Manconi, Mauro, Feketeova, Eva, Mathis, Johannes, Paiva, Teresa, Canellas, Francesca, Lecendreux, Michel, Baumann, Christian R., Barateau, Lucie, Pesenti, Carole, Antelmi, Elena, Gaig, Carles, Iranzo, Alex, Lillo-Triguero, Laura, Medrano-Martínez, Pablo, Haba-Rubio, José, Gorban, Corina, Luca, Gianina, Lammers, Gert Jan, Khatami, Ramin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6045630/
https://www.ncbi.nlm.nih.gov/pubmed/30006563
http://dx.doi.org/10.1038/s41598-018-28840-w
_version_ 1783339692047990784
author Zhang, Zhongxing
Mayer, Geert
Dauvilliers, Yves
Plazzi, Giuseppe
Pizza, Fabio
Fronczek, Rolf
Santamaria, Joan
Partinen, Markku
Overeem, Sebastiaan
Peraita-Adrados, Rosa
da Silva, Antonio Martins
Sonka, Karel
Rio-Villegas, Rafael del
Heinzer, Raphael
Wierzbicka, Aleksandra
Young, Peter
Högl, Birgit
Bassetti, Claudio L.
Manconi, Mauro
Feketeova, Eva
Mathis, Johannes
Paiva, Teresa
Canellas, Francesca
Lecendreux, Michel
Baumann, Christian R.
Barateau, Lucie
Pesenti, Carole
Antelmi, Elena
Gaig, Carles
Iranzo, Alex
Lillo-Triguero, Laura
Medrano-Martínez, Pablo
Haba-Rubio, José
Gorban, Corina
Luca, Gianina
Lammers, Gert Jan
Khatami, Ramin
author_facet Zhang, Zhongxing
Mayer, Geert
Dauvilliers, Yves
Plazzi, Giuseppe
Pizza, Fabio
Fronczek, Rolf
Santamaria, Joan
Partinen, Markku
Overeem, Sebastiaan
Peraita-Adrados, Rosa
da Silva, Antonio Martins
Sonka, Karel
Rio-Villegas, Rafael del
Heinzer, Raphael
Wierzbicka, Aleksandra
Young, Peter
Högl, Birgit
Bassetti, Claudio L.
Manconi, Mauro
Feketeova, Eva
Mathis, Johannes
Paiva, Teresa
Canellas, Francesca
Lecendreux, Michel
Baumann, Christian R.
Barateau, Lucie
Pesenti, Carole
Antelmi, Elena
Gaig, Carles
Iranzo, Alex
Lillo-Triguero, Laura
Medrano-Martínez, Pablo
Haba-Rubio, José
Gorban, Corina
Luca, Gianina
Lammers, Gert Jan
Khatami, Ramin
author_sort Zhang, Zhongxing
collection PubMed
description Narcolepsy is a rare life-long disease that exists in two forms, narcolepsy type-1 (NT1) or type-2 (NT2), but only NT1 is accepted as clearly defined entity. Both types of narcolepsies belong to the group of central hypersomnias (CH), a spectrum of poorly defined diseases with excessive daytime sleepiness as a core feature. Due to the considerable overlap of symptoms and the rarity of the diseases, it is difficult to identify distinct phenotypes of CH. Machine learning (ML) can help to identify phenotypes as it learns to recognize clinical features invisible for humans. Here we apply ML to data from the huge European Narcolepsy Network (EU-NN) that contains hundreds of mixed features of narcolepsy making it difficult to analyze with classical statistics. Stochastic gradient boosting, a supervised learning model with built-in feature selection, results in high performances in testing set. While cataplexy features are recognized as the most influential predictors, machine find additional features, e.g. mean rapid-eye-movement sleep latency of multiple sleep latency test contributes to classify NT1 and NT2 as confirmed by classical statistical analysis. Our results suggest ML can identify features of CH on machine scale from complex databases, thus providing ‘ideas’ and promising candidates for future diagnostic classifications.
format Online
Article
Text
id pubmed-6045630
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-60456302018-07-16 Exploring the clinical features of narcolepsy type 1 versus narcolepsy type 2 from European Narcolepsy Network database with machine learning Zhang, Zhongxing Mayer, Geert Dauvilliers, Yves Plazzi, Giuseppe Pizza, Fabio Fronczek, Rolf Santamaria, Joan Partinen, Markku Overeem, Sebastiaan Peraita-Adrados, Rosa da Silva, Antonio Martins Sonka, Karel Rio-Villegas, Rafael del Heinzer, Raphael Wierzbicka, Aleksandra Young, Peter Högl, Birgit Bassetti, Claudio L. Manconi, Mauro Feketeova, Eva Mathis, Johannes Paiva, Teresa Canellas, Francesca Lecendreux, Michel Baumann, Christian R. Barateau, Lucie Pesenti, Carole Antelmi, Elena Gaig, Carles Iranzo, Alex Lillo-Triguero, Laura Medrano-Martínez, Pablo Haba-Rubio, José Gorban, Corina Luca, Gianina Lammers, Gert Jan Khatami, Ramin Sci Rep Article Narcolepsy is a rare life-long disease that exists in two forms, narcolepsy type-1 (NT1) or type-2 (NT2), but only NT1 is accepted as clearly defined entity. Both types of narcolepsies belong to the group of central hypersomnias (CH), a spectrum of poorly defined diseases with excessive daytime sleepiness as a core feature. Due to the considerable overlap of symptoms and the rarity of the diseases, it is difficult to identify distinct phenotypes of CH. Machine learning (ML) can help to identify phenotypes as it learns to recognize clinical features invisible for humans. Here we apply ML to data from the huge European Narcolepsy Network (EU-NN) that contains hundreds of mixed features of narcolepsy making it difficult to analyze with classical statistics. Stochastic gradient boosting, a supervised learning model with built-in feature selection, results in high performances in testing set. While cataplexy features are recognized as the most influential predictors, machine find additional features, e.g. mean rapid-eye-movement sleep latency of multiple sleep latency test contributes to classify NT1 and NT2 as confirmed by classical statistical analysis. Our results suggest ML can identify features of CH on machine scale from complex databases, thus providing ‘ideas’ and promising candidates for future diagnostic classifications. Nature Publishing Group UK 2018-07-13 /pmc/articles/PMC6045630/ /pubmed/30006563 http://dx.doi.org/10.1038/s41598-018-28840-w Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Zhang, Zhongxing
Mayer, Geert
Dauvilliers, Yves
Plazzi, Giuseppe
Pizza, Fabio
Fronczek, Rolf
Santamaria, Joan
Partinen, Markku
Overeem, Sebastiaan
Peraita-Adrados, Rosa
da Silva, Antonio Martins
Sonka, Karel
Rio-Villegas, Rafael del
Heinzer, Raphael
Wierzbicka, Aleksandra
Young, Peter
Högl, Birgit
Bassetti, Claudio L.
Manconi, Mauro
Feketeova, Eva
Mathis, Johannes
Paiva, Teresa
Canellas, Francesca
Lecendreux, Michel
Baumann, Christian R.
Barateau, Lucie
Pesenti, Carole
Antelmi, Elena
Gaig, Carles
Iranzo, Alex
Lillo-Triguero, Laura
Medrano-Martínez, Pablo
Haba-Rubio, José
Gorban, Corina
Luca, Gianina
Lammers, Gert Jan
Khatami, Ramin
Exploring the clinical features of narcolepsy type 1 versus narcolepsy type 2 from European Narcolepsy Network database with machine learning
title Exploring the clinical features of narcolepsy type 1 versus narcolepsy type 2 from European Narcolepsy Network database with machine learning
title_full Exploring the clinical features of narcolepsy type 1 versus narcolepsy type 2 from European Narcolepsy Network database with machine learning
title_fullStr Exploring the clinical features of narcolepsy type 1 versus narcolepsy type 2 from European Narcolepsy Network database with machine learning
title_full_unstemmed Exploring the clinical features of narcolepsy type 1 versus narcolepsy type 2 from European Narcolepsy Network database with machine learning
title_short Exploring the clinical features of narcolepsy type 1 versus narcolepsy type 2 from European Narcolepsy Network database with machine learning
title_sort exploring the clinical features of narcolepsy type 1 versus narcolepsy type 2 from european narcolepsy network database with machine learning
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6045630/
https://www.ncbi.nlm.nih.gov/pubmed/30006563
http://dx.doi.org/10.1038/s41598-018-28840-w
work_keys_str_mv AT zhangzhongxing exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT mayergeert exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT dauvilliersyves exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT plazzigiuseppe exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT pizzafabio exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT fronczekrolf exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT santamariajoan exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT partinenmarkku exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT overeemsebastiaan exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT peraitaadradosrosa exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT dasilvaantoniomartins exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT sonkakarel exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT riovillegasrafaeldel exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT heinzerraphael exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT wierzbickaaleksandra exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT youngpeter exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT hoglbirgit exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT bassetticlaudiol exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT manconimauro exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT feketeovaeva exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT mathisjohannes exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT paivateresa exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT canellasfrancesca exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT lecendreuxmichel exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT baumannchristianr exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT barateaulucie exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT pesenticarole exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT antelmielena exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT gaigcarles exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT iranzoalex exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT lillotriguerolaura exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT medranomartinezpablo exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT habarubiojose exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT gorbancorina exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT lucagianina exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT lammersgertjan exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning
AT khatamiramin exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning