Cargando…
Exploring the clinical features of narcolepsy type 1 versus narcolepsy type 2 from European Narcolepsy Network database with machine learning
Narcolepsy is a rare life-long disease that exists in two forms, narcolepsy type-1 (NT1) or type-2 (NT2), but only NT1 is accepted as clearly defined entity. Both types of narcolepsies belong to the group of central hypersomnias (CH), a spectrum of poorly defined diseases with excessive daytime slee...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6045630/ https://www.ncbi.nlm.nih.gov/pubmed/30006563 http://dx.doi.org/10.1038/s41598-018-28840-w |
_version_ | 1783339692047990784 |
---|---|
author | Zhang, Zhongxing Mayer, Geert Dauvilliers, Yves Plazzi, Giuseppe Pizza, Fabio Fronczek, Rolf Santamaria, Joan Partinen, Markku Overeem, Sebastiaan Peraita-Adrados, Rosa da Silva, Antonio Martins Sonka, Karel Rio-Villegas, Rafael del Heinzer, Raphael Wierzbicka, Aleksandra Young, Peter Högl, Birgit Bassetti, Claudio L. Manconi, Mauro Feketeova, Eva Mathis, Johannes Paiva, Teresa Canellas, Francesca Lecendreux, Michel Baumann, Christian R. Barateau, Lucie Pesenti, Carole Antelmi, Elena Gaig, Carles Iranzo, Alex Lillo-Triguero, Laura Medrano-Martínez, Pablo Haba-Rubio, José Gorban, Corina Luca, Gianina Lammers, Gert Jan Khatami, Ramin |
author_facet | Zhang, Zhongxing Mayer, Geert Dauvilliers, Yves Plazzi, Giuseppe Pizza, Fabio Fronczek, Rolf Santamaria, Joan Partinen, Markku Overeem, Sebastiaan Peraita-Adrados, Rosa da Silva, Antonio Martins Sonka, Karel Rio-Villegas, Rafael del Heinzer, Raphael Wierzbicka, Aleksandra Young, Peter Högl, Birgit Bassetti, Claudio L. Manconi, Mauro Feketeova, Eva Mathis, Johannes Paiva, Teresa Canellas, Francesca Lecendreux, Michel Baumann, Christian R. Barateau, Lucie Pesenti, Carole Antelmi, Elena Gaig, Carles Iranzo, Alex Lillo-Triguero, Laura Medrano-Martínez, Pablo Haba-Rubio, José Gorban, Corina Luca, Gianina Lammers, Gert Jan Khatami, Ramin |
author_sort | Zhang, Zhongxing |
collection | PubMed |
description | Narcolepsy is a rare life-long disease that exists in two forms, narcolepsy type-1 (NT1) or type-2 (NT2), but only NT1 is accepted as clearly defined entity. Both types of narcolepsies belong to the group of central hypersomnias (CH), a spectrum of poorly defined diseases with excessive daytime sleepiness as a core feature. Due to the considerable overlap of symptoms and the rarity of the diseases, it is difficult to identify distinct phenotypes of CH. Machine learning (ML) can help to identify phenotypes as it learns to recognize clinical features invisible for humans. Here we apply ML to data from the huge European Narcolepsy Network (EU-NN) that contains hundreds of mixed features of narcolepsy making it difficult to analyze with classical statistics. Stochastic gradient boosting, a supervised learning model with built-in feature selection, results in high performances in testing set. While cataplexy features are recognized as the most influential predictors, machine find additional features, e.g. mean rapid-eye-movement sleep latency of multiple sleep latency test contributes to classify NT1 and NT2 as confirmed by classical statistical analysis. Our results suggest ML can identify features of CH on machine scale from complex databases, thus providing ‘ideas’ and promising candidates for future diagnostic classifications. |
format | Online Article Text |
id | pubmed-6045630 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-60456302018-07-16 Exploring the clinical features of narcolepsy type 1 versus narcolepsy type 2 from European Narcolepsy Network database with machine learning Zhang, Zhongxing Mayer, Geert Dauvilliers, Yves Plazzi, Giuseppe Pizza, Fabio Fronczek, Rolf Santamaria, Joan Partinen, Markku Overeem, Sebastiaan Peraita-Adrados, Rosa da Silva, Antonio Martins Sonka, Karel Rio-Villegas, Rafael del Heinzer, Raphael Wierzbicka, Aleksandra Young, Peter Högl, Birgit Bassetti, Claudio L. Manconi, Mauro Feketeova, Eva Mathis, Johannes Paiva, Teresa Canellas, Francesca Lecendreux, Michel Baumann, Christian R. Barateau, Lucie Pesenti, Carole Antelmi, Elena Gaig, Carles Iranzo, Alex Lillo-Triguero, Laura Medrano-Martínez, Pablo Haba-Rubio, José Gorban, Corina Luca, Gianina Lammers, Gert Jan Khatami, Ramin Sci Rep Article Narcolepsy is a rare life-long disease that exists in two forms, narcolepsy type-1 (NT1) or type-2 (NT2), but only NT1 is accepted as clearly defined entity. Both types of narcolepsies belong to the group of central hypersomnias (CH), a spectrum of poorly defined diseases with excessive daytime sleepiness as a core feature. Due to the considerable overlap of symptoms and the rarity of the diseases, it is difficult to identify distinct phenotypes of CH. Machine learning (ML) can help to identify phenotypes as it learns to recognize clinical features invisible for humans. Here we apply ML to data from the huge European Narcolepsy Network (EU-NN) that contains hundreds of mixed features of narcolepsy making it difficult to analyze with classical statistics. Stochastic gradient boosting, a supervised learning model with built-in feature selection, results in high performances in testing set. While cataplexy features are recognized as the most influential predictors, machine find additional features, e.g. mean rapid-eye-movement sleep latency of multiple sleep latency test contributes to classify NT1 and NT2 as confirmed by classical statistical analysis. Our results suggest ML can identify features of CH on machine scale from complex databases, thus providing ‘ideas’ and promising candidates for future diagnostic classifications. Nature Publishing Group UK 2018-07-13 /pmc/articles/PMC6045630/ /pubmed/30006563 http://dx.doi.org/10.1038/s41598-018-28840-w Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Zhang, Zhongxing Mayer, Geert Dauvilliers, Yves Plazzi, Giuseppe Pizza, Fabio Fronczek, Rolf Santamaria, Joan Partinen, Markku Overeem, Sebastiaan Peraita-Adrados, Rosa da Silva, Antonio Martins Sonka, Karel Rio-Villegas, Rafael del Heinzer, Raphael Wierzbicka, Aleksandra Young, Peter Högl, Birgit Bassetti, Claudio L. Manconi, Mauro Feketeova, Eva Mathis, Johannes Paiva, Teresa Canellas, Francesca Lecendreux, Michel Baumann, Christian R. Barateau, Lucie Pesenti, Carole Antelmi, Elena Gaig, Carles Iranzo, Alex Lillo-Triguero, Laura Medrano-Martínez, Pablo Haba-Rubio, José Gorban, Corina Luca, Gianina Lammers, Gert Jan Khatami, Ramin Exploring the clinical features of narcolepsy type 1 versus narcolepsy type 2 from European Narcolepsy Network database with machine learning |
title | Exploring the clinical features of narcolepsy type 1 versus narcolepsy type 2 from European Narcolepsy Network database with machine learning |
title_full | Exploring the clinical features of narcolepsy type 1 versus narcolepsy type 2 from European Narcolepsy Network database with machine learning |
title_fullStr | Exploring the clinical features of narcolepsy type 1 versus narcolepsy type 2 from European Narcolepsy Network database with machine learning |
title_full_unstemmed | Exploring the clinical features of narcolepsy type 1 versus narcolepsy type 2 from European Narcolepsy Network database with machine learning |
title_short | Exploring the clinical features of narcolepsy type 1 versus narcolepsy type 2 from European Narcolepsy Network database with machine learning |
title_sort | exploring the clinical features of narcolepsy type 1 versus narcolepsy type 2 from european narcolepsy network database with machine learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6045630/ https://www.ncbi.nlm.nih.gov/pubmed/30006563 http://dx.doi.org/10.1038/s41598-018-28840-w |
work_keys_str_mv | AT zhangzhongxing exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT mayergeert exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT dauvilliersyves exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT plazzigiuseppe exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT pizzafabio exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT fronczekrolf exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT santamariajoan exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT partinenmarkku exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT overeemsebastiaan exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT peraitaadradosrosa exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT dasilvaantoniomartins exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT sonkakarel exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT riovillegasrafaeldel exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT heinzerraphael exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT wierzbickaaleksandra exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT youngpeter exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT hoglbirgit exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT bassetticlaudiol exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT manconimauro exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT feketeovaeva exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT mathisjohannes exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT paivateresa exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT canellasfrancesca exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT lecendreuxmichel exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT baumannchristianr exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT barateaulucie exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT pesenticarole exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT antelmielena exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT gaigcarles exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT iranzoalex exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT lillotriguerolaura exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT medranomartinezpablo exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT habarubiojose exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT gorbancorina exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT lucagianina exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT lammersgertjan exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning AT khatamiramin exploringtheclinicalfeaturesofnarcolepsytype1versusnarcolepsytype2fromeuropeannarcolepsynetworkdatabasewithmachinelearning |