Cargando…
Learnability of a Configurator Empowering End Users to Create Mobile Data Collection Instruments: Usability Study
BACKGROUND: Many research domains still heavily rely on paper-based data collection procedures, despite numerous associated drawbacks. The QuestionSys framework is intended to empower researchers as well as clinicians without programming skills to develop their own smart mobile apps in order to coll...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6045789/ https://www.ncbi.nlm.nih.gov/pubmed/29959107 http://dx.doi.org/10.2196/mhealth.9826 |
_version_ | 1783339727845326848 |
---|---|
author | Schobel, Johannes Pryss, Rüdiger Probst, Thomas Schlee, Winfried Schickler, Marc Reichert, Manfred |
author_facet | Schobel, Johannes Pryss, Rüdiger Probst, Thomas Schlee, Winfried Schickler, Marc Reichert, Manfred |
author_sort | Schobel, Johannes |
collection | PubMed |
description | BACKGROUND: Many research domains still heavily rely on paper-based data collection procedures, despite numerous associated drawbacks. The QuestionSys framework is intended to empower researchers as well as clinicians without programming skills to develop their own smart mobile apps in order to collect data for their specific scenarios. OBJECTIVE: In order to validate the feasibility of this model-driven, end-user programming approach, we conducted a study with 80 participants. METHODS: Across 2 sessions (7 days between Session 1 and Session 2), participants had to model 10 data collection instruments (5 at each session) with the developed configurator component of the framework. In this context, performance measures like the time and operations needed as well as the resulting errors were evaluated. Participants were separated into two groups (ie, novices vs experts) based on prior knowledge in process modeling, which is one fundamental pillar of the QuestionSys framework. RESULTS: Statistical analysis (t tests) revealed that novices showed significant learning effects for errors (P=.04), operations (P<.001), and time (P<.001) from the first to the last use of the configurator. Experts showed significant learning effects for operations (P=.001) and time (P<.001), but not for errors as the experts’ errors were already very low at the first modeling of the data collection instrument. Moreover, regarding the time and operations needed, novices got significantly better at the third modeling task than experts were at the first one (t tests; P<.001 for time and P=.002 for operations). Regarding errors, novices did not get significantly better at working with any of the 10 data collection instruments than experts were at the first modeling task, but novices’ error rates for all 5 data collection instruments at Session 2 were not significantly different anymore from those of experts at the first modeling task. After 7 days of not using the configurator (from Session 1 to Session 2), the experts’ learning effect at the end of Session 1 remained stable at the beginning of Session 2, but the novices’ learning effect at the end of Session 1 showed a significant decay at the beginning of Session 2 regarding time and operations (t tests; P<.001 for time and P=.03 for operations). CONCLUSIONS: In conclusion, novices were able to use the configurator properly and showed fast (but unstable) learning effects, resulting in their performances becoming as good as those of experts (which were already good) after having little experience with the configurator. Following this, researchers and clinicians can use the QuestionSys configurator to develop data collection apps for smart mobile devices on their own. |
format | Online Article Text |
id | pubmed-6045789 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | JMIR Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-60457892018-07-19 Learnability of a Configurator Empowering End Users to Create Mobile Data Collection Instruments: Usability Study Schobel, Johannes Pryss, Rüdiger Probst, Thomas Schlee, Winfried Schickler, Marc Reichert, Manfred JMIR Mhealth Uhealth Original Paper BACKGROUND: Many research domains still heavily rely on paper-based data collection procedures, despite numerous associated drawbacks. The QuestionSys framework is intended to empower researchers as well as clinicians without programming skills to develop their own smart mobile apps in order to collect data for their specific scenarios. OBJECTIVE: In order to validate the feasibility of this model-driven, end-user programming approach, we conducted a study with 80 participants. METHODS: Across 2 sessions (7 days between Session 1 and Session 2), participants had to model 10 data collection instruments (5 at each session) with the developed configurator component of the framework. In this context, performance measures like the time and operations needed as well as the resulting errors were evaluated. Participants were separated into two groups (ie, novices vs experts) based on prior knowledge in process modeling, which is one fundamental pillar of the QuestionSys framework. RESULTS: Statistical analysis (t tests) revealed that novices showed significant learning effects for errors (P=.04), operations (P<.001), and time (P<.001) from the first to the last use of the configurator. Experts showed significant learning effects for operations (P=.001) and time (P<.001), but not for errors as the experts’ errors were already very low at the first modeling of the data collection instrument. Moreover, regarding the time and operations needed, novices got significantly better at the third modeling task than experts were at the first one (t tests; P<.001 for time and P=.002 for operations). Regarding errors, novices did not get significantly better at working with any of the 10 data collection instruments than experts were at the first modeling task, but novices’ error rates for all 5 data collection instruments at Session 2 were not significantly different anymore from those of experts at the first modeling task. After 7 days of not using the configurator (from Session 1 to Session 2), the experts’ learning effect at the end of Session 1 remained stable at the beginning of Session 2, but the novices’ learning effect at the end of Session 1 showed a significant decay at the beginning of Session 2 regarding time and operations (t tests; P<.001 for time and P=.03 for operations). CONCLUSIONS: In conclusion, novices were able to use the configurator properly and showed fast (but unstable) learning effects, resulting in their performances becoming as good as those of experts (which were already good) after having little experience with the configurator. Following this, researchers and clinicians can use the QuestionSys configurator to develop data collection apps for smart mobile devices on their own. JMIR Publications 2018-06-29 /pmc/articles/PMC6045789/ /pubmed/29959107 http://dx.doi.org/10.2196/mhealth.9826 Text en ©Johannes Schobel, Rüdiger Pryss, Thomas Probst, Winfried Schlee, Marc Schickler, Manfred Reichert. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 29.06.2018. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR mhealth and uhealth, is properly cited. The complete bibliographic information, a link to the original publication on http://mhealth.jmir.org/, as well as this copyright and license information must be included. |
spellingShingle | Original Paper Schobel, Johannes Pryss, Rüdiger Probst, Thomas Schlee, Winfried Schickler, Marc Reichert, Manfred Learnability of a Configurator Empowering End Users to Create Mobile Data Collection Instruments: Usability Study |
title | Learnability of a Configurator Empowering End Users to Create Mobile Data Collection Instruments: Usability Study |
title_full | Learnability of a Configurator Empowering End Users to Create Mobile Data Collection Instruments: Usability Study |
title_fullStr | Learnability of a Configurator Empowering End Users to Create Mobile Data Collection Instruments: Usability Study |
title_full_unstemmed | Learnability of a Configurator Empowering End Users to Create Mobile Data Collection Instruments: Usability Study |
title_short | Learnability of a Configurator Empowering End Users to Create Mobile Data Collection Instruments: Usability Study |
title_sort | learnability of a configurator empowering end users to create mobile data collection instruments: usability study |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6045789/ https://www.ncbi.nlm.nih.gov/pubmed/29959107 http://dx.doi.org/10.2196/mhealth.9826 |
work_keys_str_mv | AT schobeljohannes learnabilityofaconfiguratorempoweringenduserstocreatemobiledatacollectioninstrumentsusabilitystudy AT pryssrudiger learnabilityofaconfiguratorempoweringenduserstocreatemobiledatacollectioninstrumentsusabilitystudy AT probstthomas learnabilityofaconfiguratorempoweringenduserstocreatemobiledatacollectioninstrumentsusabilitystudy AT schleewinfried learnabilityofaconfiguratorempoweringenduserstocreatemobiledatacollectioninstrumentsusabilitystudy AT schicklermarc learnabilityofaconfiguratorempoweringenduserstocreatemobiledatacollectioninstrumentsusabilitystudy AT reichertmanfred learnabilityofaconfiguratorempoweringenduserstocreatemobiledatacollectioninstrumentsusabilitystudy |