Cargando…
Image Translation by Domain-Adversarial Training
Image translation, where the input image is mapped to its synthetic counterpart, is attractive in terms of wide applications in fields of computer graphics and computer vision. Despite significant progress on this problem, largely due to a surge of interest in conditional generative adversarial netw...
Autores principales: | Li, Zhuorong, Wang, Wanliang, Zhao, Yanwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6046163/ https://www.ncbi.nlm.nih.gov/pubmed/30050568 http://dx.doi.org/10.1155/2018/8974638 |
Ejemplares similares
-
Between-Class Adversarial Training for Improving Adversarial Robustness of Image Classification
por: Wang, Desheng, et al.
Publicado: (2023) -
Correction to: Unpaired Image-to-Image Translation Using Adversarial Consistency Loss
por: Zhao, Yihao, et al.
Publicado: (2021) -
MR-contrast-aware image-to-image translations with generative adversarial networks
por: Denck, Jonas, et al.
Publicado: (2021) -
Data Augmentation Using Adversarial Image-to-Image Translation for the Segmentation of Mobile-Acquired Dermatological Images
por: Andrade, Catarina, et al.
Publicado: (2020) -
Deploying deep learning models on unseen medical imaging using adversarial domain adaptation
por: Valliani, Aly A., et al.
Publicado: (2022)