Cargando…
Synthesis and Characterization of Lignin Hydrogels for Potential Applications as Drug Eluting Antimicrobial Coatings for Medical Materials
[Image: see text] Lignin is the second most abundant biopolymer on the planet. It is a biocompatible, cheap, environmentally friendly and readily accessible material. It has been reported that these biomacromolecules have antimicrobial activities. Consequently, lignin (LIG) has the potential to be u...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6046221/ https://www.ncbi.nlm.nih.gov/pubmed/30023141 http://dx.doi.org/10.1021/acssuschemeng.8b01371 |
_version_ | 1783339791219163136 |
---|---|
author | Larrañeta, Eneko Imízcoz, Mikel Toh, Jie X. Irwin, Nicola J. Ripolin, Anastasia Perminova, Anastasia Domínguez-Robles, Juan Rodríguez, Alejandro Donnelly, Ryan F. |
author_facet | Larrañeta, Eneko Imízcoz, Mikel Toh, Jie X. Irwin, Nicola J. Ripolin, Anastasia Perminova, Anastasia Domínguez-Robles, Juan Rodríguez, Alejandro Donnelly, Ryan F. |
author_sort | Larrañeta, Eneko |
collection | PubMed |
description | [Image: see text] Lignin is the second most abundant biopolymer on the planet. It is a biocompatible, cheap, environmentally friendly and readily accessible material. It has been reported that these biomacromolecules have antimicrobial activities. Consequently, lignin (LIG) has the potential to be used for biomedical applications. In the present work, a simple method to prepare lignin-based hydrogels is described. The hydrogels were prepared by combining LIG with poly(ethylene glycol) and poly(methyl vinyl ether-co-maleic acid) through an esterification reaction. The synthesis took place in the solid state and can be accelerated significantly (24 vs 1 h) by the use of microwave (MW) radiation. The prepared hydrogels were characterized by evaluation of their swelling capacities and with the use of infrared spectroscopy/solid-state nuclear magnetic resonance. The prepared hydrogels showed LIG contents ranging between 40% and 24% and water uptake capabilities up to 500%. Furthermore, the hydrophobic nature of LIG facilitated loading of a model hydrophobic drug (curcumin). The hydrogels were capable of sustaining the delivery of this compound for up to 4 days. Finally, the materials demonstrated logarithmic reductions in adherence of Staphylococcus aureus and Proteus mirabilis of up to 5.0 relative to the commonly employed medical material poly(vinyl chloride) (PVC). |
format | Online Article Text |
id | pubmed-6046221 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-60462212018-07-16 Synthesis and Characterization of Lignin Hydrogels for Potential Applications as Drug Eluting Antimicrobial Coatings for Medical Materials Larrañeta, Eneko Imízcoz, Mikel Toh, Jie X. Irwin, Nicola J. Ripolin, Anastasia Perminova, Anastasia Domínguez-Robles, Juan Rodríguez, Alejandro Donnelly, Ryan F. ACS Sustain Chem Eng [Image: see text] Lignin is the second most abundant biopolymer on the planet. It is a biocompatible, cheap, environmentally friendly and readily accessible material. It has been reported that these biomacromolecules have antimicrobial activities. Consequently, lignin (LIG) has the potential to be used for biomedical applications. In the present work, a simple method to prepare lignin-based hydrogels is described. The hydrogels were prepared by combining LIG with poly(ethylene glycol) and poly(methyl vinyl ether-co-maleic acid) through an esterification reaction. The synthesis took place in the solid state and can be accelerated significantly (24 vs 1 h) by the use of microwave (MW) radiation. The prepared hydrogels were characterized by evaluation of their swelling capacities and with the use of infrared spectroscopy/solid-state nuclear magnetic resonance. The prepared hydrogels showed LIG contents ranging between 40% and 24% and water uptake capabilities up to 500%. Furthermore, the hydrophobic nature of LIG facilitated loading of a model hydrophobic drug (curcumin). The hydrogels were capable of sustaining the delivery of this compound for up to 4 days. Finally, the materials demonstrated logarithmic reductions in adherence of Staphylococcus aureus and Proteus mirabilis of up to 5.0 relative to the commonly employed medical material poly(vinyl chloride) (PVC). American Chemical Society 2018-06-01 2018-07-02 /pmc/articles/PMC6046221/ /pubmed/30023141 http://dx.doi.org/10.1021/acssuschemeng.8b01371 Text en Copyright © 2018 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Larrañeta, Eneko Imízcoz, Mikel Toh, Jie X. Irwin, Nicola J. Ripolin, Anastasia Perminova, Anastasia Domínguez-Robles, Juan Rodríguez, Alejandro Donnelly, Ryan F. Synthesis and Characterization of Lignin Hydrogels for Potential Applications as Drug Eluting Antimicrobial Coatings for Medical Materials |
title | Synthesis and Characterization of Lignin Hydrogels
for Potential Applications as Drug Eluting Antimicrobial Coatings
for Medical Materials |
title_full | Synthesis and Characterization of Lignin Hydrogels
for Potential Applications as Drug Eluting Antimicrobial Coatings
for Medical Materials |
title_fullStr | Synthesis and Characterization of Lignin Hydrogels
for Potential Applications as Drug Eluting Antimicrobial Coatings
for Medical Materials |
title_full_unstemmed | Synthesis and Characterization of Lignin Hydrogels
for Potential Applications as Drug Eluting Antimicrobial Coatings
for Medical Materials |
title_short | Synthesis and Characterization of Lignin Hydrogels
for Potential Applications as Drug Eluting Antimicrobial Coatings
for Medical Materials |
title_sort | synthesis and characterization of lignin hydrogels
for potential applications as drug eluting antimicrobial coatings
for medical materials |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6046221/ https://www.ncbi.nlm.nih.gov/pubmed/30023141 http://dx.doi.org/10.1021/acssuschemeng.8b01371 |
work_keys_str_mv | AT larranetaeneko synthesisandcharacterizationofligninhydrogelsforpotentialapplicationsasdrugelutingantimicrobialcoatingsformedicalmaterials AT imizcozmikel synthesisandcharacterizationofligninhydrogelsforpotentialapplicationsasdrugelutingantimicrobialcoatingsformedicalmaterials AT tohjiex synthesisandcharacterizationofligninhydrogelsforpotentialapplicationsasdrugelutingantimicrobialcoatingsformedicalmaterials AT irwinnicolaj synthesisandcharacterizationofligninhydrogelsforpotentialapplicationsasdrugelutingantimicrobialcoatingsformedicalmaterials AT ripolinanastasia synthesisandcharacterizationofligninhydrogelsforpotentialapplicationsasdrugelutingantimicrobialcoatingsformedicalmaterials AT perminovaanastasia synthesisandcharacterizationofligninhydrogelsforpotentialapplicationsasdrugelutingantimicrobialcoatingsformedicalmaterials AT dominguezroblesjuan synthesisandcharacterizationofligninhydrogelsforpotentialapplicationsasdrugelutingantimicrobialcoatingsformedicalmaterials AT rodriguezalejandro synthesisandcharacterizationofligninhydrogelsforpotentialapplicationsasdrugelutingantimicrobialcoatingsformedicalmaterials AT donnellyryanf synthesisandcharacterizationofligninhydrogelsforpotentialapplicationsasdrugelutingantimicrobialcoatingsformedicalmaterials |