Cargando…

Differentiation between closely-related Impatiens spp. and regional biotypes of Impatiens glandulifera using a highly-simplified and inexpensive method for MALDI-TOF MS

BACKGROUND: Matrix-assisted laser-desorption and ionisation time-of-flight mass spectroscopy (MALDI-TOF MS) is a powerful tool for the characterisation and/or identification of protein-containing samples. Several MALDI-TOF MS sample-preparation methods are currently available but few of these are we...

Descripción completa

Detalles Bibliográficos
Autores principales: Reeve, Michael A., Pollard, Kathryn M., Kurose, Daisuke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6047133/
https://www.ncbi.nlm.nih.gov/pubmed/30026788
http://dx.doi.org/10.1186/s13007-018-0323-6
_version_ 1783339904286064640
author Reeve, Michael A.
Pollard, Kathryn M.
Kurose, Daisuke
author_facet Reeve, Michael A.
Pollard, Kathryn M.
Kurose, Daisuke
author_sort Reeve, Michael A.
collection PubMed
description BACKGROUND: Matrix-assisted laser-desorption and ionisation time-of-flight mass spectroscopy (MALDI-TOF MS) is a powerful tool for the characterisation and/or identification of protein-containing samples. Several MALDI-TOF MS sample-preparation methods are currently available but few of these are well suited to the analysis of plant material. We have recently developed a simple, rapid, and relatively-cheap method for MALDI-TOF MS that is applicable to plant material (in addition to microbial and insect material), and our aim in this study was to distinguish between closely-related plant species and/or between regional biotypes within an invasive weed species using this method with a view to optimising the selection of biological control agents that can be used for weed management. RESULTS: We have employed a combination of principal-component analysis and closest-relatedness diagrams derived from MALDI-TOF MS spectral-comparison data to discriminate between the closely-related Impatiens spp. Impatiens noli-tangere, Impatiens parviflora, Impatiens scabrida, Impatiens balsamina, and two regional biotypes of the invasive weed Impatiens glandulifera. We have also developed a method for sample discrimination based upon comparison between blind-test MALDI-TOF MS spectra and reference-sample spectra. Using this latter method, we have been able to discriminate on the basis of the acid-soluble-protein mass spectra generated between four regional biotypes of I. glandulifera that differ in their susceptibility to the biological control agent Himalayan balsam rust (Puccinia komarovii var. glanduliferae) using mature leaf material. Using younger leaves, discrimination was not possible between these four regional biotypes. CONCLUSIONS: MALDI-TOF MS analysis is able to discriminate between closely-related plant species within the genus Impatiens and between regional biotypes of I. glandulifera. Because of this, MALDI-TOF MS holds great promise for improving weed biological control, a management technique which uses highly-specific co-evolved natural enemies for the control of an invasive non-native plant species, through the optimal matching of biological control agents with susceptible target species/regional biotypes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13007-018-0323-6) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-6047133
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-60471332018-07-19 Differentiation between closely-related Impatiens spp. and regional biotypes of Impatiens glandulifera using a highly-simplified and inexpensive method for MALDI-TOF MS Reeve, Michael A. Pollard, Kathryn M. Kurose, Daisuke Plant Methods Methodology BACKGROUND: Matrix-assisted laser-desorption and ionisation time-of-flight mass spectroscopy (MALDI-TOF MS) is a powerful tool for the characterisation and/or identification of protein-containing samples. Several MALDI-TOF MS sample-preparation methods are currently available but few of these are well suited to the analysis of plant material. We have recently developed a simple, rapid, and relatively-cheap method for MALDI-TOF MS that is applicable to plant material (in addition to microbial and insect material), and our aim in this study was to distinguish between closely-related plant species and/or between regional biotypes within an invasive weed species using this method with a view to optimising the selection of biological control agents that can be used for weed management. RESULTS: We have employed a combination of principal-component analysis and closest-relatedness diagrams derived from MALDI-TOF MS spectral-comparison data to discriminate between the closely-related Impatiens spp. Impatiens noli-tangere, Impatiens parviflora, Impatiens scabrida, Impatiens balsamina, and two regional biotypes of the invasive weed Impatiens glandulifera. We have also developed a method for sample discrimination based upon comparison between blind-test MALDI-TOF MS spectra and reference-sample spectra. Using this latter method, we have been able to discriminate on the basis of the acid-soluble-protein mass spectra generated between four regional biotypes of I. glandulifera that differ in their susceptibility to the biological control agent Himalayan balsam rust (Puccinia komarovii var. glanduliferae) using mature leaf material. Using younger leaves, discrimination was not possible between these four regional biotypes. CONCLUSIONS: MALDI-TOF MS analysis is able to discriminate between closely-related plant species within the genus Impatiens and between regional biotypes of I. glandulifera. Because of this, MALDI-TOF MS holds great promise for improving weed biological control, a management technique which uses highly-specific co-evolved natural enemies for the control of an invasive non-native plant species, through the optimal matching of biological control agents with susceptible target species/regional biotypes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13007-018-0323-6) contains supplementary material, which is available to authorized users. BioMed Central 2018-07-16 /pmc/articles/PMC6047133/ /pubmed/30026788 http://dx.doi.org/10.1186/s13007-018-0323-6 Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Methodology
Reeve, Michael A.
Pollard, Kathryn M.
Kurose, Daisuke
Differentiation between closely-related Impatiens spp. and regional biotypes of Impatiens glandulifera using a highly-simplified and inexpensive method for MALDI-TOF MS
title Differentiation between closely-related Impatiens spp. and regional biotypes of Impatiens glandulifera using a highly-simplified and inexpensive method for MALDI-TOF MS
title_full Differentiation between closely-related Impatiens spp. and regional biotypes of Impatiens glandulifera using a highly-simplified and inexpensive method for MALDI-TOF MS
title_fullStr Differentiation between closely-related Impatiens spp. and regional biotypes of Impatiens glandulifera using a highly-simplified and inexpensive method for MALDI-TOF MS
title_full_unstemmed Differentiation between closely-related Impatiens spp. and regional biotypes of Impatiens glandulifera using a highly-simplified and inexpensive method for MALDI-TOF MS
title_short Differentiation between closely-related Impatiens spp. and regional biotypes of Impatiens glandulifera using a highly-simplified and inexpensive method for MALDI-TOF MS
title_sort differentiation between closely-related impatiens spp. and regional biotypes of impatiens glandulifera using a highly-simplified and inexpensive method for maldi-tof ms
topic Methodology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6047133/
https://www.ncbi.nlm.nih.gov/pubmed/30026788
http://dx.doi.org/10.1186/s13007-018-0323-6
work_keys_str_mv AT reevemichaela differentiationbetweencloselyrelatedimpatienssppandregionalbiotypesofimpatiensglanduliferausingahighlysimplifiedandinexpensivemethodformalditofms
AT pollardkathrynm differentiationbetweencloselyrelatedimpatienssppandregionalbiotypesofimpatiensglanduliferausingahighlysimplifiedandinexpensivemethodformalditofms
AT kurosedaisuke differentiationbetweencloselyrelatedimpatienssppandregionalbiotypesofimpatiensglanduliferausingahighlysimplifiedandinexpensivemethodformalditofms