Cargando…
Feature selection for gene prediction in metagenomic fragments
BACKGROUND: Computational approaches, specifically machine-learning techniques, play an important role in many metagenomic analysis algorithms, such as gene prediction. Due to the large feature space, current de novo gene prediction algorithms use different combinations of classification algorithms...
Autores principales: | Al-Ajlan, Amani, El Allali, Achraf |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6047368/ https://www.ncbi.nlm.nih.gov/pubmed/30026811 http://dx.doi.org/10.1186/s13040-018-0170-z |
Ejemplares similares
-
CNN-MGP: Convolutional Neural Networks for Metagenomics Gene Prediction
por: Al-Ajlan, Amani, et al.
Publicado: (2018) -
MGC: a metagenomic gene caller
por: El Allali, Achraf, et al.
Publicado: (2013) -
MZPAQ: a FASTQ data compression tool
por: El Allali, Achraf, et al.
Publicado: (2019) -
Gene prediction in metagenomic fragments: A large scale machine learning approach
por: Hoff, Katharina J, et al.
Publicado: (2008) -
Revealing large metagenomic regions through long DNA fragment hybridization capture
por: Gasc, Cyrielle, et al.
Publicado: (2017)