Cargando…

Hyperphosphatasia with mental retardation syndrome, expanded phenotype of PIGL related disorders

Hypomorphic mutations in six different genes involved in the glycosylphosphatidylinositol (GPI) biogenesis pathway are linked to Mabry syndrome (hyperphosphatasia with mental retardation syndrome, HPMRS). This report on the third affected family with a HPMRS phenotype caused by mutations in PIGL, co...

Descripción completa

Detalles Bibliográficos
Autores principales: Altassan, Ruqaiah, Fox, Stephanie, Poulin, Chantal, Buhas, Daniela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6047459/
https://www.ncbi.nlm.nih.gov/pubmed/30023290
http://dx.doi.org/10.1016/j.ymgmr.2018.01.007
Descripción
Sumario:Hypomorphic mutations in six different genes involved in the glycosylphosphatidylinositol (GPI) biogenesis pathway are linked to Mabry syndrome (hyperphosphatasia with mental retardation syndrome, HPMRS). This report on the third affected family with a HPMRS phenotype caused by mutations in PIGL, confirming the seventh GPI biogenesis gene linked to HPMRS. Two siblings presented with the main features of HPMRS; developmental delay, cognitive impairment, seizure disorder, skeletal deformities, and high alkaline phosphatase. We identified two heterozygous mutations in the PIGL gene (P.Trp20Ter and p.Arg88Cys). PIGL mutations have been linked to another distinctive neuroectodermal disorder: CHIME syndrome. The clinical picture of our patients expands the spectrum of PIGL-related phenotypes.