Cargando…

Loading BMP-2 on nanostructured hydroxyapatite microspheres for rapid bone regeneration

INTRODUCTION: Tissue engineering is a promising strategy for bone regeneration in repairing massive bone defects. The surface morphology of implanted materials plays a key role in bone healing; these materials incorporate osteoinductive factors to improve the efficiency of bone regeneration. MATERIA...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Panyu, Wu, Jianghong, Xia, Yan, Yuan, Ye, Zhang, Hongyue, Xu, Shuogui, Lin, Kaili
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6047624/
https://www.ncbi.nlm.nih.gov/pubmed/30034234
http://dx.doi.org/10.2147/IJN.S158280
Descripción
Sumario:INTRODUCTION: Tissue engineering is a promising strategy for bone regeneration in repairing massive bone defects. The surface morphology of implanted materials plays a key role in bone healing; these materials incorporate osteoinductive factors to improve the efficiency of bone regeneration. MATERIALS AND METHODS: In the current study, nanostructured hydroxyapatite (nHAp) micro-spheres were prepared via a hydrothermal transformation method using calcium silicate (CS) microspheres as precursors; the CS microspheres were obtained by a spray-drying method. The nHAp microspheres constructed by the nano-whiskers significantly improved the ability of the microspheres to adsorb the bioactive protein (BMP-2) and reduce its initial burst release. To evaluate the in vivo bone regeneration of microspheres, both conventional hydroxyapatite (HAp) and nHAp microspheres were either loaded with recombinant human bone morphogenetic protein-2 (rhBMP-2) or not loaded with the protein; these microspheres were implanted in rat femoral bone defects for 4 and 8 weeks. RESULTS AND DISCUSSION: The results of our three-dimensional (3D) micro-computed tomography (CT) and histomorphometric observations showed that the combination of the nano-structured surface and rhBMP-2 obviously improved osteogenesis compared to conventional HAp microspheres loaded with rhBMP-2. Our results suggest that the nHAp microspheres with a nanostructured surface adsorb rhBMP-2 for rapid bone formation; they therefore show the potential to act as carriers in bone tissue regeneration.