Cargando…

Circulating tumor cells mirror bone metastatic phenotype in prostate cancer

Circulating tumor cells (CTCs) are promising biomarkers in prostate cancer (PC) because they derive from primary tumor and metastatic tissues. In this study, we used quantitative real-time PCR (qPCR) to compare the expression profiles of 41 PC-related genes between paired CTC and spinal column metas...

Descripción completa

Detalles Bibliográficos
Autores principales: Josefsson, Andreas, Larsson, Karin, Månsson, Marianne, Björkman, Jens, Rohlova, Eva, Åhs, Daniel, Brisby, Helena, Damber, Jan-Erik, Welén, Karin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6047665/
https://www.ncbi.nlm.nih.gov/pubmed/30034626
http://dx.doi.org/10.18632/oncotarget.25634
Descripción
Sumario:Circulating tumor cells (CTCs) are promising biomarkers in prostate cancer (PC) because they derive from primary tumor and metastatic tissues. In this study, we used quantitative real-time PCR (qPCR) to compare the expression profiles of 41 PC-related genes between paired CTC and spinal column metastasis samples from 22 PC patients that underwent surgery for spinal cord compression. We observed good concordance between the gene expression profiles in the CTC and metastasis samples in most of the PC patients. Expression of nine genes (AGR2, AKR1C3, AR, CDH1, FOLH1, HER2, KRT19, MDK, and SPINK1) showed a significant correlation between the CTC and metastasis samples. Hierarchical clustering analysis showed a similar grouping of PC patients based on the expression of these nine genes in both CTC and metastasis samples. Our findings demonstrate that CTCs mirror gene expression patterns in tissue metastasis samples from PC patients. Although low detection frequency of certain genes is a limitation in CTCs, our results indicate the potential for CTC phenotyping as a tool to improve individualized therapy in metastatic prostate cancer.