Cargando…
The TGFα-EGFR-Akt signaling axis plays a role in enhancing proinflammatory chemokines in triple-negative breast cancer cells
Triple-negative breast cancer (TNBC) is aggressive and typically has a poor prognosis. Chemokines have chemoattractant potential for cancer metastasis. Here, we investigated the chemokine signatures in BC subtypes and the underlying mechanisms that enhance proinflammatory chemokines in TNBC. Analysi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6047672/ https://www.ncbi.nlm.nih.gov/pubmed/30034618 http://dx.doi.org/10.18632/oncotarget.25389 |
_version_ | 1783339980260638720 |
---|---|
author | Ignacio, Rosa Mistica C. Gibbs, Carla R. Lee, Eun-Sook Son, Deok-Soo |
author_facet | Ignacio, Rosa Mistica C. Gibbs, Carla R. Lee, Eun-Sook Son, Deok-Soo |
author_sort | Ignacio, Rosa Mistica C. |
collection | PubMed |
description | Triple-negative breast cancer (TNBC) is aggressive and typically has a poor prognosis. Chemokines have chemoattractant potential for cancer metastasis. Here, we investigated the chemokine signatures in BC subtypes and the underlying mechanisms that enhance proinflammatory chemokines in TNBC. Analysis from microarray dataset revealed that basal-like BC subtype including TNBC expressed dominantly proinflammatory chemokines, such as CXCL1 and 8, compared to non-TNBC. Chemokine PCR array confirmed the dominant chemokines in TNBC cells. To identify a driving factor for proinflammatory chemokines in TNBC cells, we determined the expression and signaling profiles of epidermal growth factor receptor (EGFR) family members. TNBC cells expressed higher levels of EGFR and phosphorylated Akt/Erk than non-TNBC cells. In addition, EGF further enhanced the proinflammatory chemokines in TNBC cells, including CXCL2. Knockdown of Akt reduced the CXCL2 promoter activity, while overexpression of Akt enhanced it. MK2206, an Akt inhibitor, reduced the CXCL2 promoter activity, while inhibition and knockdown of Erk did not reduce its activity. We found that transforming growth factor alpha (TGFα) could serve as a main ligand for EGFR to drive EGFR-mediated Akt activation in TNBC cells. MK2206 decreased TGFα promoter activity, while overexpression of Akt increased it. MK2206 also reduced TGFα release from TNBC cells. Moreover, MK2206 downregulated CXCL2 mRNA expression, while TGFα upregulated it. Taken together, the TGFα-EGFR-Akt signaling axis can play a role in enhancing proinflammatory chemokine expression in TNBC, subsequently contributing to the inflammatory burden that ultimately lead to cancer progression and a higher mortality rate among TNBC patients. |
format | Online Article Text |
id | pubmed-6047672 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-60476722018-07-20 The TGFα-EGFR-Akt signaling axis plays a role in enhancing proinflammatory chemokines in triple-negative breast cancer cells Ignacio, Rosa Mistica C. Gibbs, Carla R. Lee, Eun-Sook Son, Deok-Soo Oncotarget Research Paper Triple-negative breast cancer (TNBC) is aggressive and typically has a poor prognosis. Chemokines have chemoattractant potential for cancer metastasis. Here, we investigated the chemokine signatures in BC subtypes and the underlying mechanisms that enhance proinflammatory chemokines in TNBC. Analysis from microarray dataset revealed that basal-like BC subtype including TNBC expressed dominantly proinflammatory chemokines, such as CXCL1 and 8, compared to non-TNBC. Chemokine PCR array confirmed the dominant chemokines in TNBC cells. To identify a driving factor for proinflammatory chemokines in TNBC cells, we determined the expression and signaling profiles of epidermal growth factor receptor (EGFR) family members. TNBC cells expressed higher levels of EGFR and phosphorylated Akt/Erk than non-TNBC cells. In addition, EGF further enhanced the proinflammatory chemokines in TNBC cells, including CXCL2. Knockdown of Akt reduced the CXCL2 promoter activity, while overexpression of Akt enhanced it. MK2206, an Akt inhibitor, reduced the CXCL2 promoter activity, while inhibition and knockdown of Erk did not reduce its activity. We found that transforming growth factor alpha (TGFα) could serve as a main ligand for EGFR to drive EGFR-mediated Akt activation in TNBC cells. MK2206 decreased TGFα promoter activity, while overexpression of Akt increased it. MK2206 also reduced TGFα release from TNBC cells. Moreover, MK2206 downregulated CXCL2 mRNA expression, while TGFα upregulated it. Taken together, the TGFα-EGFR-Akt signaling axis can play a role in enhancing proinflammatory chemokine expression in TNBC, subsequently contributing to the inflammatory burden that ultimately lead to cancer progression and a higher mortality rate among TNBC patients. Impact Journals LLC 2018-06-29 /pmc/articles/PMC6047672/ /pubmed/30034618 http://dx.doi.org/10.18632/oncotarget.25389 Text en Copyright: © 2018 Ignacio et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (http://creativecommons.org/licenses/by/3.0/) (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Ignacio, Rosa Mistica C. Gibbs, Carla R. Lee, Eun-Sook Son, Deok-Soo The TGFα-EGFR-Akt signaling axis plays a role in enhancing proinflammatory chemokines in triple-negative breast cancer cells |
title | The TGFα-EGFR-Akt signaling axis plays a role in enhancing proinflammatory chemokines in triple-negative breast cancer cells |
title_full | The TGFα-EGFR-Akt signaling axis plays a role in enhancing proinflammatory chemokines in triple-negative breast cancer cells |
title_fullStr | The TGFα-EGFR-Akt signaling axis plays a role in enhancing proinflammatory chemokines in triple-negative breast cancer cells |
title_full_unstemmed | The TGFα-EGFR-Akt signaling axis plays a role in enhancing proinflammatory chemokines in triple-negative breast cancer cells |
title_short | The TGFα-EGFR-Akt signaling axis plays a role in enhancing proinflammatory chemokines in triple-negative breast cancer cells |
title_sort | tgfα-egfr-akt signaling axis plays a role in enhancing proinflammatory chemokines in triple-negative breast cancer cells |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6047672/ https://www.ncbi.nlm.nih.gov/pubmed/30034618 http://dx.doi.org/10.18632/oncotarget.25389 |
work_keys_str_mv | AT ignaciorosamisticac thetgfaegfraktsignalingaxisplaysaroleinenhancingproinflammatorychemokinesintriplenegativebreastcancercells AT gibbscarlar thetgfaegfraktsignalingaxisplaysaroleinenhancingproinflammatorychemokinesintriplenegativebreastcancercells AT leeeunsook thetgfaegfraktsignalingaxisplaysaroleinenhancingproinflammatorychemokinesintriplenegativebreastcancercells AT sondeoksoo thetgfaegfraktsignalingaxisplaysaroleinenhancingproinflammatorychemokinesintriplenegativebreastcancercells AT ignaciorosamisticac tgfaegfraktsignalingaxisplaysaroleinenhancingproinflammatorychemokinesintriplenegativebreastcancercells AT gibbscarlar tgfaegfraktsignalingaxisplaysaroleinenhancingproinflammatorychemokinesintriplenegativebreastcancercells AT leeeunsook tgfaegfraktsignalingaxisplaysaroleinenhancingproinflammatorychemokinesintriplenegativebreastcancercells AT sondeoksoo tgfaegfraktsignalingaxisplaysaroleinenhancingproinflammatorychemokinesintriplenegativebreastcancercells |