Cargando…
Novel In-situ Precipitation Process to Engineer Low Permeability Porous Composite
Inspired by the natural precipitation of minerals in soil and rocks, a novel, simple and industrially scalable in-situ precipitation process to produce low permeability porous composites is presented. This process relies on capillary flow in wettable porous composites to absorb and store liquid. In...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6048042/ https://www.ncbi.nlm.nih.gov/pubmed/30013224 http://dx.doi.org/10.1038/s41598-018-28786-z |
Sumario: | Inspired by the natural precipitation of minerals in soil and rocks, a novel, simple and industrially scalable in-situ precipitation process to produce low permeability porous composites is presented. This process relies on capillary flow in wettable porous composites to absorb and store liquid. In this process, a porous composite first absorbs a salt solution, after which the composite is dipped in a second salt solution. Salts are selected such as they react to form an insoluble precipitate. As big pores absorb more liquid than small pores, the precipitated particles are formed specifically for each pore. In this paper, precipitation of CaCO(3) nanoparticles in cellulose nanofibre (CNF) films was demonstrated as an example. Precipitation of 1 wt% of CaCO(3) nanoparticles in the CNF film reduced the pore volume by 50%, without changing the density. This reduced the water vapour and oxygen transmission rates by one order of magnitude to 4.7 g/m(2).day and 2.7 cc/m(2).day, respectively. The barrier properties of in-situ precipitated composites showed superior performance to previously reported CNF films in literature. The concept is general and of very high industrial interest as it can easily be retrofitted to current continuous industrial processes. |
---|