Cargando…
Control of neural systems at multiple scales using model-free, deep reinforcement learning
Recent improvements in hardware and data collection have lowered the barrier to practical neural control. Most of the current contributions to the field have focus on model-based control, however, models of neural systems are quite complex and difficult to design. To circumvent these issues, we adap...
Autores principales: | Mitchell, B. A., Petzold, L. R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6048054/ https://www.ncbi.nlm.nih.gov/pubmed/30013195 http://dx.doi.org/10.1038/s41598-018-29134-x |
Ejemplares similares
-
Application of Reinforcement Learning and Deep Learning in Multiple-Input and Multiple-Output (MIMO) Systems
por: Naeem, Muddasar, et al.
Publicado: (2021) -
Spiking neural network model of free-energy-based reinforcement learning
por: Nakano, Takashi, et al.
Publicado: (2011) -
Optimum trajectory learning in musculoskeletal systems with model predictive control and deep reinforcement learning
por: Denizdurduran, Berat, et al.
Publicado: (2022) -
Deep reinforcement learning with significant multiplications inference
por: Ivanov, Dmitry A., et al.
Publicado: (2023) -
Application of deep neural network and deep reinforcement learning in wireless communication
por: Li, Ming, et al.
Publicado: (2020)