Cargando…

TCM visualizes trajectories and cell populations from single cell data

Profiling single cell gene expression data over specified time periods are increasingly applied to the study of complex developmental processes. Here, we describe a novel prototype-based dimension reduction method to visualize high throughput temporal expression data for single cell analyses. Our so...

Descripción completa

Detalles Bibliográficos
Autores principales: Gong, Wuming, Kwak, Il-Youp, Koyano-Nakagawa, Naoko, Pan, Wei, Garry, Daniel J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6048168/
https://www.ncbi.nlm.nih.gov/pubmed/30013097
http://dx.doi.org/10.1038/s41467-018-05112-9
Descripción
Sumario:Profiling single cell gene expression data over specified time periods are increasingly applied to the study of complex developmental processes. Here, we describe a novel prototype-based dimension reduction method to visualize high throughput temporal expression data for single cell analyses. Our software preserves the global developmental trajectories over a specified time course, and it also identifies subpopulations of cells within each time point demonstrating superior visualization performance over six commonly used methods.