Cargando…

TCM visualizes trajectories and cell populations from single cell data

Profiling single cell gene expression data over specified time periods are increasingly applied to the study of complex developmental processes. Here, we describe a novel prototype-based dimension reduction method to visualize high throughput temporal expression data for single cell analyses. Our so...

Descripción completa

Detalles Bibliográficos
Autores principales: Gong, Wuming, Kwak, Il-Youp, Koyano-Nakagawa, Naoko, Pan, Wei, Garry, Daniel J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6048168/
https://www.ncbi.nlm.nih.gov/pubmed/30013097
http://dx.doi.org/10.1038/s41467-018-05112-9
_version_ 1783340060154789888
author Gong, Wuming
Kwak, Il-Youp
Koyano-Nakagawa, Naoko
Pan, Wei
Garry, Daniel J.
author_facet Gong, Wuming
Kwak, Il-Youp
Koyano-Nakagawa, Naoko
Pan, Wei
Garry, Daniel J.
author_sort Gong, Wuming
collection PubMed
description Profiling single cell gene expression data over specified time periods are increasingly applied to the study of complex developmental processes. Here, we describe a novel prototype-based dimension reduction method to visualize high throughput temporal expression data for single cell analyses. Our software preserves the global developmental trajectories over a specified time course, and it also identifies subpopulations of cells within each time point demonstrating superior visualization performance over six commonly used methods.
format Online
Article
Text
id pubmed-6048168
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-60481682018-07-18 TCM visualizes trajectories and cell populations from single cell data Gong, Wuming Kwak, Il-Youp Koyano-Nakagawa, Naoko Pan, Wei Garry, Daniel J. Nat Commun Article Profiling single cell gene expression data over specified time periods are increasingly applied to the study of complex developmental processes. Here, we describe a novel prototype-based dimension reduction method to visualize high throughput temporal expression data for single cell analyses. Our software preserves the global developmental trajectories over a specified time course, and it also identifies subpopulations of cells within each time point demonstrating superior visualization performance over six commonly used methods. Nature Publishing Group UK 2018-07-16 /pmc/articles/PMC6048168/ /pubmed/30013097 http://dx.doi.org/10.1038/s41467-018-05112-9 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Gong, Wuming
Kwak, Il-Youp
Koyano-Nakagawa, Naoko
Pan, Wei
Garry, Daniel J.
TCM visualizes trajectories and cell populations from single cell data
title TCM visualizes trajectories and cell populations from single cell data
title_full TCM visualizes trajectories and cell populations from single cell data
title_fullStr TCM visualizes trajectories and cell populations from single cell data
title_full_unstemmed TCM visualizes trajectories and cell populations from single cell data
title_short TCM visualizes trajectories and cell populations from single cell data
title_sort tcm visualizes trajectories and cell populations from single cell data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6048168/
https://www.ncbi.nlm.nih.gov/pubmed/30013097
http://dx.doi.org/10.1038/s41467-018-05112-9
work_keys_str_mv AT gongwuming tcmvisualizestrajectoriesandcellpopulationsfromsinglecelldata
AT kwakilyoup tcmvisualizestrajectoriesandcellpopulationsfromsinglecelldata
AT koyanonakagawanaoko tcmvisualizestrajectoriesandcellpopulationsfromsinglecelldata
AT panwei tcmvisualizestrajectoriesandcellpopulationsfromsinglecelldata
AT garrydanielj tcmvisualizestrajectoriesandcellpopulationsfromsinglecelldata