Cargando…
A wavelength-convertible quantum memory: Controlled echo
Quantum coherence control is reinvestigated for a new physical insight in quantum nonlinear optics and applied for a wavelength-convertible quantum memory in a solid ensemble whose spin states are inhomogeneously broadened. Unlike typical atomic media whose spin decays are homogeneous, a spin inhomo...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6048175/ https://www.ncbi.nlm.nih.gov/pubmed/30013123 http://dx.doi.org/10.1038/s41598-018-28776-1 |
Sumario: | Quantum coherence control is reinvestigated for a new physical insight in quantum nonlinear optics and applied for a wavelength-convertible quantum memory in a solid ensemble whose spin states are inhomogeneously broadened. Unlike typical atomic media whose spin decays are homogeneous, a spin inhomogeneously broadened solid ensemble requires a counter-intuitive quantum coherence control to avoid spontaneous emission-caused quantum noises. Such a quantum coherence control in a solid ensemble satisfying both near perfect retrieval efficiency and ultralong photon storage offers a solid framework to quantum repeaters, scalable qubit generations, quantum cryptography, and highly sensitive magnetometry. Here, the basic physics of the counter-intuitive quantum coherence control is presented not only for a fundamental understanding of collective ensemble phase control but also for a coherence conversion mechanism between optical and spin states involving Raman rephasing. |
---|