Cargando…

MiR-150-3p targets SP1 and suppresses the growth of glioma cells

Glioma has been considered as one of the most prevalent and common malignancy of the nervous system; however, the underlying mechanisms that are responsible for the occurrence and development of glioma still remain largely unknown. Amounting evidence highlights the critical regulatory function of mi...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Zhigang, Jia, Jiaoying, Jiang, Yugang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6048207/
https://www.ncbi.nlm.nih.gov/pubmed/29654167
http://dx.doi.org/10.1042/BSR20180019
Descripción
Sumario:Glioma has been considered as one of the most prevalent and common malignancy of the nervous system; however, the underlying mechanisms that are responsible for the occurrence and development of glioma still remain largely unknown. Amounting evidence highlights the critical regulatory function of miRNAs in carcinogenesis. Here, we showed that the expression of miR-150-3p was significantly decreased in glioma tissues and cell lines. Suppressed expression of miR-150-3p was associated with the lymph node metastasis of the glioma patients. Overexpression of miR-150-3p significantly inhibited the proliferation of glioma cells. Molecular study uncovered that the transcription factor specificity protein 1 (SP1) was identified as one of the targets of miR-150-3p. Highly expressed miR-150-3p in glioma cells significantly decreased both the mRNA and protein levels of SP1. Consistently, the abundance of phosphatase and tension homolog deleted on chromosome ten (PTEN), a negative downstream target of SP1, was increased with the ectopic miR-150-3p. Collectively, these results suggested that miR-150-3p suppressed the growth of glioma cells partially via regulating SP1 and possibly PTEN.