Cargando…

Targeting β1-integrin inhibits vascular leakage in endotoxemia

Loss of endothelial integrity promotes capillary leakage in numerous diseases, including sepsis, but there are no effective therapies for preserving endothelial barrier function. Angiopoietin-2 (ANGPT2) is a context-dependent regulator of vascular leakage that signals via both endothelial TEK recept...

Descripción completa

Detalles Bibliográficos
Autores principales: Hakanpaa, Laura, Kiss, Elina A., Jacquemet, Guillaume, Miinalainen, Ilkka, Lerche, Martina, Guzmán, Camilo, Mervaala, Eero, Eklund, Lauri, Ivaska, Johanna, Saharinen, Pipsa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6048499/
https://www.ncbi.nlm.nih.gov/pubmed/29941602
http://dx.doi.org/10.1073/pnas.1722317115
Descripción
Sumario:Loss of endothelial integrity promotes capillary leakage in numerous diseases, including sepsis, but there are no effective therapies for preserving endothelial barrier function. Angiopoietin-2 (ANGPT2) is a context-dependent regulator of vascular leakage that signals via both endothelial TEK receptor tyrosine kinase (TIE2) and integrins. Here, we show that antibodies against β1-integrin decrease LPS-induced vascular leakage in murine endotoxemia, as either a preventative or an intervention therapy. β1-integrin inhibiting antibodies bound to the vascular endothelium in vivo improved the integrity of endothelial cell–cell junctions and protected mice from endotoxemia-associated cardiac failure, without affecting endothelial inflammation, serum proinflammatory cytokine levels, or TIE receptor signaling. Moreover, conditional deletion of a single allele of endothelial β1-integrin protected mice from LPS-induced vascular leakage. In endothelial monolayers, the inflammatory agents thrombin, lipopolysaccharide (LPS), and IL-1β decreased junctional vascular endothelial (VE)-cadherin and induced actin stress fibers via β1- and α5-integrins and ANGPT2. Additionally, β1-integrin inhibiting antibodies prevented inflammation-induced endothelial cell contractility and monolayer permeability. Mechanistically, the inflammatory agents stimulated ANGPT2-dependent translocation of α5β1-integrin into tensin-1–positive fibrillar adhesions, which destabilized the endothelial monolayer. Thus, β1-integrin promotes endothelial barrier disruption during inflammation, and targeting β1-integrin signaling could serve as a novel means of blocking pathological vascular leak.