Cargando…

Cellulose crystals plastify by localized shear

Cellulose microfibrils are the principal structural building blocks of wood and plants. Their crystalline domains provide outstanding mechanical properties. Cellulose microfibrils have thus a remarkable potential as eco-friendly fibrous reinforcements for structural engineered materials. However, th...

Descripción completa

Detalles Bibliográficos
Autores principales: Molnár, Gergely, Rodney, David, Martoïa, Florian, Dumont, Pierre J. J., Nishiyama, Yoshiharu, Mazeau, Karim, Orgéas, Laurent
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6048501/
https://www.ncbi.nlm.nih.gov/pubmed/29925601
http://dx.doi.org/10.1073/pnas.1800098115
Descripción
Sumario:Cellulose microfibrils are the principal structural building blocks of wood and plants. Their crystalline domains provide outstanding mechanical properties. Cellulose microfibrils have thus a remarkable potential as eco-friendly fibrous reinforcements for structural engineered materials. However, the elastoplastic properties of cellulose crystals remain poorly understood. Here, we use atomistic simulations to determine the plastic shear resistance of cellulose crystals and analyze the underpinning atomic deformation mechanisms. In particular, we demonstrate how the complex and adaptable atomic structure of crystalline cellulose controls its anisotropic elastoplastic behavior. For perfect crystals, we show that shear occurs through localized bands along with noticeable dilatancy. Depending on the shear direction, not only noncovalent interactions between cellulose chains but also local deformations, translations, and rotations of the cellulose macromolecules contribute to the response of the crystal. We also reveal the marked effect of crystalline defects like dislocations, which decrease both the yield strength and the dilatancy, in a way analogous to that of metallic crystals.