Cargando…

E. coli surface display of streptavidin for directed evolution of an allylic deallylase

Artificial metalloenzymes (ArMs hereafter) combine attractive features of both homogeneous catalysts and enzymes and offer the potential to implement new-to-nature reactions in living organisms. Herein we present an E. coli surface display platform for streptavidin (Sav hereafter) relying on an Lpp-...

Descripción completa

Detalles Bibliográficos
Autores principales: Heinisch, Tillmann, Schwizer, Fabian, Garabedian, Brett, Csibra, Eszter, Jeschek, Markus, Vallapurackal, Jaicy, Pinheiro, Vitor B., Marlière, Philippe, Panke, Sven, Ward, Thomas R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6048633/
https://www.ncbi.nlm.nih.gov/pubmed/30079176
http://dx.doi.org/10.1039/c8sc00484f
Descripción
Sumario:Artificial metalloenzymes (ArMs hereafter) combine attractive features of both homogeneous catalysts and enzymes and offer the potential to implement new-to-nature reactions in living organisms. Herein we present an E. coli surface display platform for streptavidin (Sav hereafter) relying on an Lpp-OmpA anchor. The system was used for the high throughput screening of a bioorthogonal CpRu-based artificial deallylase (ADAse) that uncages an allylcarbamate-protected aminocoumarin 1. Two rounds of directed evolution afforded the double mutant S112M–K121A that displayed a 36-fold increase in surface activity vs. cellular background and a 5.7-fold increased in vitro activity compared to the wild type enzyme. The crystal structure of the best ADAse reveals the importance of mutation S112M to stabilize the cofactor conformation inside the protein.