Cargando…
Repeated adrenocorticotropic hormone administration alters adrenal and thyroid hormones in free-ranging elephant seals
Understanding the physiological response of marine mammals to anthropogenic stressors can inform marine ecosystem conservation strategies. Stress stimulates the activation of the hypothalamic–pituitary–adrenal (HPA) axis and synthesis of glucocorticoid (GC) hormones, which increase energy substrate...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6048993/ https://www.ncbi.nlm.nih.gov/pubmed/30034809 http://dx.doi.org/10.1093/conphys/coy040 |
Sumario: | Understanding the physiological response of marine mammals to anthropogenic stressors can inform marine ecosystem conservation strategies. Stress stimulates the activation of the hypothalamic–pituitary–adrenal (HPA) axis and synthesis of glucocorticoid (GC) hormones, which increase energy substrate availability while suppressing energy-intensive processes. Exposure to repeated stressors can potentially affect an animal’s ability to respond to and recover from subsequent challenges. To mimic repeated activation of the HPA axis by environmental stressors (or challenges), we administered adrenocorticotropic hormone (ACTH) to free-ranging juvenile northern elephant seals (Mirounga angustirostris; n = 7) once daily for 4 days. ACTH administration induced significant elevation in circulating cortisol and aldosterone levels. The cortisol responses did not vary in magnitude between the first ACTH administration on Day 1 and the last administration on Day 4. In contrast, aldosterone levels remained elevated above baseline for at least 24 h after each ACTH injection, and responses were greater on Day 4 than Day 1. Total triiodothyronine (tT3) levels were decreased on Day 4 relative to Day 1, while reverse triiodothyronine (rT3) concentrations increased relative to baseline on Days 1 and 4 in response to ACTH, indicating a suppression of thyroid hormone production. There was no effect of ACTH on the sex steroid dehydroepiandrosterone. These data suggest that elephant seals are able to mount adrenal responses to multiple ACTH administrations. However, repeated ACTH administration resulted in facilitation of aldosterone secretion and suppression of tT3, which may impact osmoregulation and metabolism, respectively. We propose that aldosterone and tT3 are informative additional indicators of repeated stress in marine mammals. |
---|