Cargando…
Improving forecasting accuracy for stock market data using EMD-HW bagging
Many researchers documented that the stock market data are nonstationary and nonlinear time series data. In this study, we use EMD-HW bagging method for nonstationary and nonlinear time series forecasting. The EMD-HW bagging method is based on the empirical mode decomposition (EMD), the moving block...
Autores principales: | Awajan, Ahmad M., Ismail, Mohd Tahir, AL Wadi, S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6049912/ https://www.ncbi.nlm.nih.gov/pubmed/30016323 http://dx.doi.org/10.1371/journal.pone.0199582 |
Ejemplares similares
-
Housing market forecasts via stock market indicators
por: Mittal, Varun, et al.
Publicado: (2023) -
Forecasting China’s stock market risk under the background of the Stock Connect programs
por: Chen, Wei, et al.
Publicado: (2023) -
COVID-19 forecasts via stock market indicators
por: Liang, Yi, et al.
Publicado: (2022) -
Investigating Deep Stock Market Forecasting with Sentiment Analysis
por: Liapis, Charalampos M., et al.
Publicado: (2023) -
Stock Market Forecasting Based on Spatiotemporal Deep Learning
por: Li, Yung-Chen, et al.
Publicado: (2023)