Cargando…

Maintaining bovine satellite cells stemness through p38 pathway

Isolating and maintaining the appropriate stem cell for large scale cell culture is essential in tissue engineering or food production. For bovine satellite cells an optimized isolation and purification protocol is lacking and there is also no detailed understanding on the factors that maintain stem...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Shijie, Swennen, G. N. M, Messmer, Tobias, Gagliardi, Mick, Molin, Daniël G. M., Li, Chunbao, Zhou, Guanghong, Post, Mark J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050236/
https://www.ncbi.nlm.nih.gov/pubmed/30018348
http://dx.doi.org/10.1038/s41598-018-28746-7
Descripción
Sumario:Isolating and maintaining the appropriate stem cell for large scale cell culture is essential in tissue engineering or food production. For bovine satellite cells an optimized isolation and purification protocol is lacking and there is also no detailed understanding on the factors that maintain stemness of these cells. Here, we set up a fluorescence-activated cell sorting strategy to enrich bovine satellite cells. We found that p38-MAPK signalling is activated and PAX7 expression is gradually lost during satellite cell proliferation. The p38 inhibitor (SB203580) treatment maintained PAX7 expression but inhibited the fusion of satellite cells in a concentration-dependent way in short-term incubation. The mechanism of p38 inhibition was confirmed by inhibiting canonical p38 signalling, i.e. HSP27. Long-term culture with an appropriate concentration of p38i enhanced the proliferation and PAX7 expression, while the differentiation capacity recovered and was enhanced compared to vehicle control. These studies indicate that bovine satellite cells maintenance depends on cell purity and p38 MAPK signalling. Inhibition of p38 MAPK signaling is a promising strategy to facilitate large scale cell expansion of primary cells for tissue engineering and cultured meat purposes.