Cargando…

The sources of high airborne radioactivity in cryoconite holes from the Caucasus (Georgia)

Cryoconite granules are mixtures of mineral particles, organic substances and organisms on the surface of glaciers where they decrease the ice albedo and are responsible for formation of water-filled holes. The contaminants are effectively trapped in the cryoconite granules and stay there for many y...

Descripción completa

Detalles Bibliográficos
Autores principales: Łokas, Edyta, Zawierucha, Krzysztof, Cwanek, Anna, Szufa, Katarzyna, Gaca, Paweł, Mietelski, Jerzy W., Tomankiewicz, Ewa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050279/
https://www.ncbi.nlm.nih.gov/pubmed/30018384
http://dx.doi.org/10.1038/s41598-018-29076-4
_version_ 1783340300023889920
author Łokas, Edyta
Zawierucha, Krzysztof
Cwanek, Anna
Szufa, Katarzyna
Gaca, Paweł
Mietelski, Jerzy W.
Tomankiewicz, Ewa
author_facet Łokas, Edyta
Zawierucha, Krzysztof
Cwanek, Anna
Szufa, Katarzyna
Gaca, Paweł
Mietelski, Jerzy W.
Tomankiewicz, Ewa
author_sort Łokas, Edyta
collection PubMed
description Cryoconite granules are mixtures of mineral particles, organic substances and organisms on the surface of glaciers where they decrease the ice albedo and are responsible for formation of water-filled holes. The contaminants are effectively trapped in the cryoconite granules and stay there for many years. This study evaluates the contamination level of artificial and natural radionuclides in cryoconite holes from Adishi glacier (Georgia) and identifies the sources of contamination based on activity or mass ratios among artificial radionuclides. Results revealed high activity concentrations of fallout radionuclides reaching 4900 Bq/kg, 2.5 Bq/kg, 107 Bq/kg and 68 Bq/kg for (137)Cs, (238)Pu, (239+240)Pu and (241)Am, respectively. The main source of Pu is global fallout, but the low (240)Pu/(239)Pu atomic ratios also indicated local tropospheric source of (239)Pu, probably from the Kapustin Yar nuclear test site. Also, high activity ratios of (241)Am/(239+240)Pu could originate from Kapustin Yar. The natural radionuclides originate from the surrounding rocks and were measured to control the environmental processes. (210)Pb in cryoconite granules comes predominantly from the atmospheric deposition, and its activity concentrations reach high values up to 12000 Bq/kg.
format Online
Article
Text
id pubmed-6050279
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-60502792018-07-19 The sources of high airborne radioactivity in cryoconite holes from the Caucasus (Georgia) Łokas, Edyta Zawierucha, Krzysztof Cwanek, Anna Szufa, Katarzyna Gaca, Paweł Mietelski, Jerzy W. Tomankiewicz, Ewa Sci Rep Article Cryoconite granules are mixtures of mineral particles, organic substances and organisms on the surface of glaciers where they decrease the ice albedo and are responsible for formation of water-filled holes. The contaminants are effectively trapped in the cryoconite granules and stay there for many years. This study evaluates the contamination level of artificial and natural radionuclides in cryoconite holes from Adishi glacier (Georgia) and identifies the sources of contamination based on activity or mass ratios among artificial radionuclides. Results revealed high activity concentrations of fallout radionuclides reaching 4900 Bq/kg, 2.5 Bq/kg, 107 Bq/kg and 68 Bq/kg for (137)Cs, (238)Pu, (239+240)Pu and (241)Am, respectively. The main source of Pu is global fallout, but the low (240)Pu/(239)Pu atomic ratios also indicated local tropospheric source of (239)Pu, probably from the Kapustin Yar nuclear test site. Also, high activity ratios of (241)Am/(239+240)Pu could originate from Kapustin Yar. The natural radionuclides originate from the surrounding rocks and were measured to control the environmental processes. (210)Pb in cryoconite granules comes predominantly from the atmospheric deposition, and its activity concentrations reach high values up to 12000 Bq/kg. Nature Publishing Group UK 2018-07-17 /pmc/articles/PMC6050279/ /pubmed/30018384 http://dx.doi.org/10.1038/s41598-018-29076-4 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Łokas, Edyta
Zawierucha, Krzysztof
Cwanek, Anna
Szufa, Katarzyna
Gaca, Paweł
Mietelski, Jerzy W.
Tomankiewicz, Ewa
The sources of high airborne radioactivity in cryoconite holes from the Caucasus (Georgia)
title The sources of high airborne radioactivity in cryoconite holes from the Caucasus (Georgia)
title_full The sources of high airborne radioactivity in cryoconite holes from the Caucasus (Georgia)
title_fullStr The sources of high airborne radioactivity in cryoconite holes from the Caucasus (Georgia)
title_full_unstemmed The sources of high airborne radioactivity in cryoconite holes from the Caucasus (Georgia)
title_short The sources of high airborne radioactivity in cryoconite holes from the Caucasus (Georgia)
title_sort sources of high airborne radioactivity in cryoconite holes from the caucasus (georgia)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050279/
https://www.ncbi.nlm.nih.gov/pubmed/30018384
http://dx.doi.org/10.1038/s41598-018-29076-4
work_keys_str_mv AT łokasedyta thesourcesofhighairborneradioactivityincryoconiteholesfromthecaucasusgeorgia
AT zawieruchakrzysztof thesourcesofhighairborneradioactivityincryoconiteholesfromthecaucasusgeorgia
AT cwanekanna thesourcesofhighairborneradioactivityincryoconiteholesfromthecaucasusgeorgia
AT szufakatarzyna thesourcesofhighairborneradioactivityincryoconiteholesfromthecaucasusgeorgia
AT gacapaweł thesourcesofhighairborneradioactivityincryoconiteholesfromthecaucasusgeorgia
AT mietelskijerzyw thesourcesofhighairborneradioactivityincryoconiteholesfromthecaucasusgeorgia
AT tomankiewiczewa thesourcesofhighairborneradioactivityincryoconiteholesfromthecaucasusgeorgia
AT łokasedyta sourcesofhighairborneradioactivityincryoconiteholesfromthecaucasusgeorgia
AT zawieruchakrzysztof sourcesofhighairborneradioactivityincryoconiteholesfromthecaucasusgeorgia
AT cwanekanna sourcesofhighairborneradioactivityincryoconiteholesfromthecaucasusgeorgia
AT szufakatarzyna sourcesofhighairborneradioactivityincryoconiteholesfromthecaucasusgeorgia
AT gacapaweł sourcesofhighairborneradioactivityincryoconiteholesfromthecaucasusgeorgia
AT mietelskijerzyw sourcesofhighairborneradioactivityincryoconiteholesfromthecaucasusgeorgia
AT tomankiewiczewa sourcesofhighairborneradioactivityincryoconiteholesfromthecaucasusgeorgia