Cargando…
The sources of high airborne radioactivity in cryoconite holes from the Caucasus (Georgia)
Cryoconite granules are mixtures of mineral particles, organic substances and organisms on the surface of glaciers where they decrease the ice albedo and are responsible for formation of water-filled holes. The contaminants are effectively trapped in the cryoconite granules and stay there for many y...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050279/ https://www.ncbi.nlm.nih.gov/pubmed/30018384 http://dx.doi.org/10.1038/s41598-018-29076-4 |
_version_ | 1783340300023889920 |
---|---|
author | Łokas, Edyta Zawierucha, Krzysztof Cwanek, Anna Szufa, Katarzyna Gaca, Paweł Mietelski, Jerzy W. Tomankiewicz, Ewa |
author_facet | Łokas, Edyta Zawierucha, Krzysztof Cwanek, Anna Szufa, Katarzyna Gaca, Paweł Mietelski, Jerzy W. Tomankiewicz, Ewa |
author_sort | Łokas, Edyta |
collection | PubMed |
description | Cryoconite granules are mixtures of mineral particles, organic substances and organisms on the surface of glaciers where they decrease the ice albedo and are responsible for formation of water-filled holes. The contaminants are effectively trapped in the cryoconite granules and stay there for many years. This study evaluates the contamination level of artificial and natural radionuclides in cryoconite holes from Adishi glacier (Georgia) and identifies the sources of contamination based on activity or mass ratios among artificial radionuclides. Results revealed high activity concentrations of fallout radionuclides reaching 4900 Bq/kg, 2.5 Bq/kg, 107 Bq/kg and 68 Bq/kg for (137)Cs, (238)Pu, (239+240)Pu and (241)Am, respectively. The main source of Pu is global fallout, but the low (240)Pu/(239)Pu atomic ratios also indicated local tropospheric source of (239)Pu, probably from the Kapustin Yar nuclear test site. Also, high activity ratios of (241)Am/(239+240)Pu could originate from Kapustin Yar. The natural radionuclides originate from the surrounding rocks and were measured to control the environmental processes. (210)Pb in cryoconite granules comes predominantly from the atmospheric deposition, and its activity concentrations reach high values up to 12000 Bq/kg. |
format | Online Article Text |
id | pubmed-6050279 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-60502792018-07-19 The sources of high airborne radioactivity in cryoconite holes from the Caucasus (Georgia) Łokas, Edyta Zawierucha, Krzysztof Cwanek, Anna Szufa, Katarzyna Gaca, Paweł Mietelski, Jerzy W. Tomankiewicz, Ewa Sci Rep Article Cryoconite granules are mixtures of mineral particles, organic substances and organisms on the surface of glaciers where they decrease the ice albedo and are responsible for formation of water-filled holes. The contaminants are effectively trapped in the cryoconite granules and stay there for many years. This study evaluates the contamination level of artificial and natural radionuclides in cryoconite holes from Adishi glacier (Georgia) and identifies the sources of contamination based on activity or mass ratios among artificial radionuclides. Results revealed high activity concentrations of fallout radionuclides reaching 4900 Bq/kg, 2.5 Bq/kg, 107 Bq/kg and 68 Bq/kg for (137)Cs, (238)Pu, (239+240)Pu and (241)Am, respectively. The main source of Pu is global fallout, but the low (240)Pu/(239)Pu atomic ratios also indicated local tropospheric source of (239)Pu, probably from the Kapustin Yar nuclear test site. Also, high activity ratios of (241)Am/(239+240)Pu could originate from Kapustin Yar. The natural radionuclides originate from the surrounding rocks and were measured to control the environmental processes. (210)Pb in cryoconite granules comes predominantly from the atmospheric deposition, and its activity concentrations reach high values up to 12000 Bq/kg. Nature Publishing Group UK 2018-07-17 /pmc/articles/PMC6050279/ /pubmed/30018384 http://dx.doi.org/10.1038/s41598-018-29076-4 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Łokas, Edyta Zawierucha, Krzysztof Cwanek, Anna Szufa, Katarzyna Gaca, Paweł Mietelski, Jerzy W. Tomankiewicz, Ewa The sources of high airborne radioactivity in cryoconite holes from the Caucasus (Georgia) |
title | The sources of high airborne radioactivity in cryoconite holes from the Caucasus (Georgia) |
title_full | The sources of high airborne radioactivity in cryoconite holes from the Caucasus (Georgia) |
title_fullStr | The sources of high airborne radioactivity in cryoconite holes from the Caucasus (Georgia) |
title_full_unstemmed | The sources of high airborne radioactivity in cryoconite holes from the Caucasus (Georgia) |
title_short | The sources of high airborne radioactivity in cryoconite holes from the Caucasus (Georgia) |
title_sort | sources of high airborne radioactivity in cryoconite holes from the caucasus (georgia) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050279/ https://www.ncbi.nlm.nih.gov/pubmed/30018384 http://dx.doi.org/10.1038/s41598-018-29076-4 |
work_keys_str_mv | AT łokasedyta thesourcesofhighairborneradioactivityincryoconiteholesfromthecaucasusgeorgia AT zawieruchakrzysztof thesourcesofhighairborneradioactivityincryoconiteholesfromthecaucasusgeorgia AT cwanekanna thesourcesofhighairborneradioactivityincryoconiteholesfromthecaucasusgeorgia AT szufakatarzyna thesourcesofhighairborneradioactivityincryoconiteholesfromthecaucasusgeorgia AT gacapaweł thesourcesofhighairborneradioactivityincryoconiteholesfromthecaucasusgeorgia AT mietelskijerzyw thesourcesofhighairborneradioactivityincryoconiteholesfromthecaucasusgeorgia AT tomankiewiczewa thesourcesofhighairborneradioactivityincryoconiteholesfromthecaucasusgeorgia AT łokasedyta sourcesofhighairborneradioactivityincryoconiteholesfromthecaucasusgeorgia AT zawieruchakrzysztof sourcesofhighairborneradioactivityincryoconiteholesfromthecaucasusgeorgia AT cwanekanna sourcesofhighairborneradioactivityincryoconiteholesfromthecaucasusgeorgia AT szufakatarzyna sourcesofhighairborneradioactivityincryoconiteholesfromthecaucasusgeorgia AT gacapaweł sourcesofhighairborneradioactivityincryoconiteholesfromthecaucasusgeorgia AT mietelskijerzyw sourcesofhighairborneradioactivityincryoconiteholesfromthecaucasusgeorgia AT tomankiewiczewa sourcesofhighairborneradioactivityincryoconiteholesfromthecaucasusgeorgia |