Cargando…
Insightful classification of crystal structures using deep learning
Computational methods that automatically extract knowledge from data are critical for enabling data-driven materials science. A reliable identification of lattice symmetry is a crucial first step for materials characterization and analytics. Current methods require a user-specified threshold, and ar...
Autores principales: | Ziletti, Angelo, Kumar, Devinder, Scheffler, Matthias, Ghiringhelli, Luca M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050314/ https://www.ncbi.nlm.nih.gov/pubmed/30018362 http://dx.doi.org/10.1038/s41467-018-05169-6 |
Ejemplares similares
-
Robust recognition and exploratory analysis of crystal structures via Bayesian deep learning
por: Leitherer, Andreas, et al.
Publicado: (2021) -
Identifying domains of applicability of machine learning models for materials science
por: Sutton, Christopher, et al.
Publicado: (2020) -
A semi-supervised deep-learning approach for automatic crystal structure classification
por: Lolla, Satvik, et al.
Publicado: (2022) -
Deep learning classification of urinary sediment crystals with optimal parameter tuning
por: Nagai, Takahiro, et al.
Publicado: (2022) -
Classification of crystallization outcomes using deep convolutional neural networks
por: Bruno, Andrew E., et al.
Publicado: (2018)